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Disorder and order in sheared colloidal suspensions. II. Stochastic simulations

B. Morin and D. Ronis
Department of Chemistry, McGill University, 801 Sherbrooke Ouest, Montre´al, Québec, Canada H3A 2K6

~Received 28 July 1998!

Motivated by predictions of previous theoretical work@B. Morin and D. Ronis, Phys. Rev. E54, 576~1996!#
we perform two dimensional stochastic simulations of sheared colloidal suspensions, governed by stochastic
differential equations based on simple symmetries such as detailed balance~or time reversal symmetry of the
action!, which take the form of a modified fluctuating Navier-Stokes equation describing the local velocity of
the fluid, coupled to a generalized convective-diffusion equation for the colloid number density. The results of
the stochastic simulations are in agreement with earlier results based on the same model equations; specifically,
there exists a transition in the homogeneous colloidal system to a layered phase at high shear rate and packing
fraction. Additional insight is obtained through the analysis of the approximate equations for the first and
second moments, derived perturbatively from the Fokker-Planck equation.@S1063-651X~99!14502-1#

PACS number~s!: 82.70.2y, 64.60.My
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I. INTRODUCTION

Rheology, the study of the properties of flowing materia
and, in particular, of flowing colloidal dispersions, has lo
been an area of active research. In practice, colloidal sus
sions take many forms, such as paint, oil, grease, and e
mud and foods such as sauces, among other things. Th
fect of shear on these systems is of practical interest s
their fabrication and use often involve mixing of some so
At the same time, the large variations in viscosity seen
these systems as a function of shear rate and concentr
could be better exploited once a better understanding of
phenomena and of the role of the relevant parameter
reached.

Colloidal suspensions are comprised of microscopic p
ticles, typically having a radius varying from 100 nm
10,000 nm in magnitude. Because they exhibit all phase
condensed systems, i.e. gas, liquid, crystalline, and gl
they are ideal to study equilibrium and non-equilibrium a
pects of phase transitions. Perhaps most important is t
large diffusion time,tD , which makes colloidal dispersion
very useful in the investigation of non-equilibrium phenom
ena, and more specifically, of the effects of applied sh
stresses on liquids. For example, consider a colloidal par
with an effective diameter ofs;1024 cm and with a diffu-
sion constantD0;1028 cm2/s. The time for the colloidal
particle to diffuse by a lengths is of the order oftD
;s2/D0;1 s. Consequently, for concentrated suspensio
where the typical correlation length and inter-particle d
tance isO(s), the effects of a linear shear gradient are e
pected to manifest themselves once the shear rate,v0, is of
the order of 1/tD51 s21, which is well within the range of
experiments. Typical small molecule fluids on the oth
hand, have diffusion times 1010– 1012 times larger, thus re-
quiring large shear rates, unreachable experimentally.

Earlier work by Hoffman@1# on crystalline phases of col
loidal suspensions shows the typical phenomena see
most such systems under shear; whether the equilibrium
is crystalline or liquid, the viscosity initially decreases~shear
thinning!, and then, in most cases, increases~shear thicken-
ing! before a~sometimes discontinuous! increase in viscosity
PRE 591063-651X/99/59~3!/3100~16!/$15.00
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is seen at large enough packing fractions. As the shear ra
increased past the shear thickening region~whether continu-
ous or discontinuous!, shear thinning resumes. Hoffman a
sociated the discontinuity in viscosity to an order-disord
transition in which the system, originally crystalline, dege
erates to a less ordered state. Liquid colloidal suspens
have the same behavior except that the discontinuous
crease in viscosity is associated with anincreasein order.
Past the discontinuity, the system is thought to order i
planes of colloid flowing with constant velocity over eac
other, thus reducing the viscosity as this new configurat
allows for a flow with less collisions and/or hydrodynam
interactions between particles.

Nonequilibrium molecular dynamics simulations b
Erpenbeck@2#, Woodcock@3#, Heyes, Morriss, and Evan
@4#, and Stevens, Robbins, and Belak@5#, as well as nonequi-
librium Brownian dynamics simulations by Xue and Gre
@6# and Rastogi, Wagher, and Lustig@7#, seem to confirm
this scenario, although these simulations do not include
underlying solvent or concomitant hydrodynamic intera
tions. In addition, many of these simulations lead to wh
many consider an overly large ordered region in the sh
rate versus volume fraction phase diagram. The work
Mitchell and Heyes@8# includes many-body hydrodynamic
interactions in the Stokes approximation. The inclusion
these far-field hydrodynamics interactions do not reduce
size of the ordered region in the phase diagram, and ma
fact promote the formation of layers. Hence, short-range
drodynamics forces are thought to have an important role
building a realistic model for nonequilibrium simulations
colloidal suspensions.

The above calculations find instantaneous configurati
that exhibit layering or string formation under shear. F
example, the structure factors of Xue and Grest’s deve
large peaks in the neighborhood of the equilibrium ma
peak for wave vectors along the shear gradient direct
thereby signaling ordering in that direction at a particle se
ration close to the equilibrium average particle distance.
a certain range of shear rates, they also find a large pea
the structure factor for wave vectors along the vorticity
rection ~perpendicular to the flow and shear gradient dire
3100 ©1999 The American Physical Society
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tion! in the vicinity of the second peak of the equilibriu
structure factor. This suggests further ordering in each pl
into strings of particles, with strings in the plane above a
below a reference plane~which flow at different velocities!,
staggered, in order to maximize the distance between str
of different velocities. Hence, strings form that are ordered
a triangular lattice in the plane perpendicular to the fl
direction, while remaining disordered in the flow direction

Both liquid and crystalline colloidal suspensions ha
roughly the same steady-state layered pattern which is m
ordered than a liquid, but less ordered than a crystal, i
spective of whether the zero-shear equilibrium state was
uidlike or crystalline. In the presence of shear, the main
ference is in the flow direction, where the crystal may rem
crystalline ~if somewhat less ordered!, whereas the liquid
remains disordered. Note, however, that flowing colloid
crystals can have long wavelength instabilities as the mo
of a crystal plane with respect to another creates a peri
modulation of the elastic properties@9,10#. As a conse-
quence, the existence of flowing crystals is limited by t
phenomena, the details of which depend on the size and
ometry of the system.

Hoffman’s work also suggests that further increasing
shear rate after the jump in viscosity leads to a loss of or
the system becomes amorphous and then reorders weak
even higher shear rates. Ackerson and co-workers@11# see
much of the same behavior but are cautious about a sim
interpretation of the weak order seen by Hoffman at the hi
est shear. Although light scattering might suggest a reapp
ance of order at very high shear rates, such evidence
reordering is not seen in neutron scattering. Conseque
other effects could be at the origin of the return of iride
cence at very large shear rates, such as surface induce
fects @11#. The instability mentioned at the end of the la
paragraph is another possible explanation. In this work,
focus mostly on the transition to a layered state that proba
corresponds to the resumption of shear thinning, past
shear thickening transition.

More recently, the hypothesis that an order-disorder tr
sition is associated with a sudden increase in viscosity
been challenged@12#. It is suggested that the formation o
layers is not necessary to the occurrence of shear thicken
In our view, this is right, but also consistent with the sta
dard view. The shear thickening regime is a two-phase s
where ‘‘fluctuating’’ layers coexist with the disordered sta
Only at higher shear rates do steady-state layers form,
reducing interparticle collisions and allowing shear thinni
to resume. Hence, an order-disorder transition occurs no
the shear thickening regime, but at higher shear rates, a
onset of a second shear thinning regime.

In a previous work,@13#, we performed a perturbativ
analysis of a model of colloidal suspensions which includ
hydrodynamic interactions associated with active mixin
The model equations were the same as those to be used
and are described in the next section. It was found that
system responds nontrivially to the application of a line
shear gradient of the form:v05v0xŷ, wherev0 is the shear
rate. For example, at zero wave number, the direct corr
tion function ~and thereby the structure factor! increases as
v0

3/2 for small shear rates, whereas for sufficiently large wa
numbers along the shear gradient direction~herekx), i.e., for
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kx@(v0s)/D0 ~wheres is the hard sphere particles’ diam
eter, andD0 is the diffusion constant!, the nonequilibrium
corrections to the structure factor has anv0

2 dependence,
again for small shear rates. As the shear is increased,
structure factor evolves towards unity everywhere excep
the planeky50, i.e., perpendicular to the flow direction. I
that special direction, the main peak initially decreases,
then increases with increasing shear until, for sufficien
high packing fraction, it diverges, suggesting the existence
long-range order at a finite wavelength, and presumabl
lamellar pattern. A phase diagram in the packing fractio
shear rate plane was constructed having a line at a cri
packing fraction below which no instability to the formatio
of layers exist even at infinite shear, and the spinodal-l
line just described. Finally, it was found that the waveleng
of the instability grows with the packing fraction. Motivate
by these results, here we numerically perform tw
dimensional stochastic simulations of Langevin equatio
describing the model in question, subjected to a linear sh
gradient, and report on the results below.

In the next section, the model is presented together w
some details relating to the stochastic simulation and a n
perturbative analysis based on moment equations. A num
cal analysis of approximate equations governing the first
second moments is presented in Sec. III A and numer
results based on a full stochastic simulation of the Lange
equations follow in Sec. III B. Some concluding remarks a
made in Sec. IV. Finally, an analysis of the moment eq
tions for periodic solutions is contained in the Appendix.

II. THEORY

The stochastic differential equations defining the mo
are the fluctuating convective-diffusion equation for the c
loidal number density,N(x,t), and the fluctuating Navier-
Stokes equation for the local fluid velocity field,v(x,t). The
latter equation contains a nonlinear, nonlocal term involv
the colloid number density, called active mixing, that is n
present in traditional hydrodynamics, and is responsible
all the new phenomena. It is important to realize that t
new term is by no meansad hoc. It results from the require-
ment of detailed balance@14,15# which insures the system
relaxes to its proper equilibrium in the absence of exter
perturbations. Hence, the model is based on simple sym
tries and has no adjustable parameters. For more detail
the derivation of the model, and in particular, the origin
the active-mixing term, see, e.g., Refs.@16–22#.

The equations of motion governing the evolution of t
fields are

]N~x,t !

]t
5D0¹2m~x,t !2v~x,t !•¹N~x,t !1z~x,t ! ~1!

and

]v~x,t !

]t
5n¹2v~x,t !2v~x,t !•¹v~x,t !2

¹p~x,t !

r

1
kBT

rnc
m~x,t !¹N~x,t !1f~x,t !, ~2!

where
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3102 PRE 59B. MORIN AND D. RONIS
m~x,t ![E dk

~2p!d
e2 ik•x

N~k,t !

S~eq!~k!
, ~3!

and with the Gaussian noise distributions defined by the
ments,

^z~x,t !&50, ^f~x,t !&50, ~4!

^z~x,t !z~x8,t8!&52D0nc~2¹2!d~x2x8!d~ t2t8!,
~5a!

and

^ f i~x,t ! f j~x8,t8!&

52kBT~n/r!@2¹2d i j 2¹ i¹ j~
1
3 1g!#

3d~x2x8!d~ t2t8!, ~5b!

wherenc is the number density of colloidal particles,r is the
fluid density,D0 is the diffusion constant of the suspensio
in the solvent,n is the kinematic viscosity (n[h/r, whereh
is the dynamic viscosity!, p is the local pressure, andg is the
ratio of the bulk viscosity to the shear viscosity. The defi
tion of m(x,t) follows from de Gennes’ expression for
generalized diffusion operator@23#, as in Ref.@24#. The mass
density of the colloidal particles is assumed to be equa
that of the solvent and both are taken to be incompress
leading to the following relations:

r5const, and¹•v~x,t !50. ~6!

This condition can be used to eliminate longitudinal ter
such as the pressure gradient term in Eq.~2! and the term in
¹ i¹ j in the velocity noise correlation, Eq.~5b!, which in-
cludes the bulk viscosity. As input to the model, the equil
rium structure factor must be specified. For this purpose,
three-dimensional hard-sphere structure factor in the Per
Yevick approximation is used.

At this point, it is useful to note that Eqs.~1! and ~2! do
not evolve on the same time scale. This is easily seen if
looks at the ratio of the diffusion constantsPt5n/D0, which
is typically of the order of 106. (Pt stands for the Prandt
number, in analogy with thermal diffusion in fluids, and
sometimes referred to as the Schmidt numberSc). This
means that as far as the relaxation of colloidal numb
density fluctuations are concerned, the relaxation of velo
fluctuations is essentially instantaneous. This can be
ploited to eliminate the velocity field and thus obtain a sin
nonlinear equation for the number-density field. It will som
times be convenient to rescale the units and fields as follo
space is in units ofs, time is in units ofs2/D0, the number
density,N(r ,t), is in units ofnc , and the velocity is in units
of D0 /s, with s the particles’ diameter. In these rescal
units, the infinite Prandtl number limit~also called the high
friction limit ! of Eqs.~1! and~2! together with Eq.~6!, takes
the following form in Fourier space:
o-

-

o
le,

s

-
e
s-

e

r-
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x-

-
s:

]N~k,t !

]t
52

k2

S~eq!~k!
N~k,t !12aky

]

]kx
N~k,t !1j~k,t !

2E dk1

~2p!d

N~k2k1 ,t !

k1
2 F j t~k1 ,t !•~2 ik!

1bncs
dE dk2

~2p!d
k•FJ k1

•k2N~k12k2 ,t !

3
N~k2 ,t !

S~eq!~k2!
G , ~7!

where (FI k) i j [d i j 2 k̂ i k̂ j , b[(kBTs22d)/(hD0), d is the
spatial dimension, and the dimensionless shear rate is g
by a[(v0s2)/(2D0). The rescaled random noise field
have the same type of distribution as before except for
value of the variance and the fact thatj t is now transverse.
These changes appear only in the second moments, w
are now rewritten, again in Fourier space, as

^j~k,t !j~k8,t8!&5
2k2

ncs
d
~2p!dd~k1k8!d~ t2t8!, ~8a!

and

^ j t~k,t !j t~k8,t8!&52bk2FI k~2p!dd~k1k8!d~ t2t8!.
~8b!

In three dimensions, the Stokes-Einstein relation giv
(kBT)/(D0h)53ps, which leads tobncs

d518f, where
f5(p/6)ncs

3, is the three-dimensional packing fraction.
two dimensions, the Stokes-Einstein relation does not h
because the drag coefficient depends logarithmically o
colloidal particle’s velocity, cf.@25#. Nonetheless, this veloc
ity dependence is weak~logarithmic! and for what follows
we let (kBT)/(D0h)54p/$1/22g2 ln@us/(8n)#%, whereu is
the average velocity of the colloidal particles with respect
the solvent andg is Euler’s constant. As an order of magn
tude, a reasonable estimate foru is u;D0 /s, which leads to
the two-dimensional relation, (kBT)/(D0h);4p/@(1/2)2g
1 ln(8Pt)#, where Pt5n/D0 is the Prandtl number. Large
variations of the Prandtl number, e.g., fromPt5103 to Pt
51010 ~which more than encompasses the typical range
values!, lead to modest changes in the value
(kBT)/(D0h), namely, from roughlyp/2 to p/6, respec-
tively. The value (kBT)/(D0h);p/4 was arbitrarily chosen
for our numerical work, and, as a result, in two dimensio
bncs

d;(p/4)ncs
25f, f being the two-dimensional pack

ing fraction. Finally, note that the nonlinear terms in t
Langevin equations renormalize the bare diffusion consta
and hence, strictly speaking, the preceding discussion ap
to the renormalized diffusion constant cf. Sec. II B.

A. Perturbative calculation

The main motivation for this work is our previous pertu
bative analysis of Eqs.~1!–~6!, cf. Ref.@13#. There, we used
the statistical field theory model presented above, and
rived, to first order in perturbation theory, the nonequili
rium correction to the two-point correlation function, resu
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ing from an applied linear shear gradient given byv0

5v0xŷ. The steady-state two-point correlation function
related to the structure factor by

^N~k!N~k8!&5E dV

2p E dV8

2p
^N~k,V!N~k8,V8!&

5~2p!dd~k1k8!ncS~k!. ~9!

We thus obtained an expression for the first-order correc
to the nonequilibrium structure factor. We focused on
shear gradient directionx as linear theory was argued to be
good approximation in the flow directiony ~which is con-
firmed by the stochastic simulations of the present wo!.
Letting q be the wave number in the rescaled unitsq
5kxs), the nonequilibrium structure was found to have t
form

S~q!5
1

12nc@c~q!1 f ~q!1 f ~2q!#
, ~10!

wherec(q) is the equilibrium direct correlation function i
Fourier space. Using as input the equilibrium structure fac
for a hard sphere system in the Percus-Yevick approxi
tion, it was found that the first-order nonequilibrium corre
tion f (q) is given by the expression below:

ncf ~q!5
3

8p2 Ey.0
dx

y21z2

@~x1q!21y21z2#2

3E
0

`

dp
]

]pS S~eq!@A~x1p!21y21z2#

S~eq!~ uxu!
D

3expF2
1

ayE0

p

dr
@~x1r !21y21z2#

S~eq!@A~x1r !21y21z2#
G .

~11!

This allowed us to construct an approximate phase diag
in the packing fraction-shear rate plane, with an instabi
line defined by the spinodal line 1/S(q* )ua5acr

50, where

q* is the position of the largest peak. This constituted one
the first theoretical predictions of a nonequilibrium transiti
to a lamellar pattern resulting from an applied shear in c
loidal suspensions. In addition, our model includes a kind
hydrodynamic interaction induced by the active-mixi
terms ~see below!, and is responsible for the instability; a
far as we know, with the exception of some studies of m
els describing the more complicated effect of shear on p
mers @26,27#, these interactions were absent in the ear
works that offer strongest theoretical support for a transit
to a layered state under shear, i.e., the numerical simulat
@2–7#. It was thus imperative that the model equations
tested in a nonperturbative fashion to find out whether
instability in question was an artifact of the perturbati
method, or indeed exists. The stochastic simulations
scribed below confirm the existence of the instability.

In @13#, an attempt was also made at determining, alo
with the instability line, a line representing the point whe
the system turns around from shear thinning to shear th
ening. Since the viscosity may be written as an integra
n
e
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@S(q)21#, times other shear independent factors, we as
ciated the transition from shear thinning to shear thicken
to the point where the main peak of the structure factor st
decreasing and starts increasing, i.e., the point wh
]S(q* )/(]a)50. This point, however, is beyond the scop
of this work, as viscosity calculations, while conceptua
simple, are difficult to do numerically@28# and are not per-
formed here.

The nonequilibrium correction was studied in various lim
its. For example, at zero wave number (q50) and for small
shear (a,1), Eq. ~11! reduces to

ncf ~0!5
3

8p2
a3/2

nc]
2c~q!/]q2uq50

@12ncc~0!#5/2
C, ~12!

where C51.848 is a universal constant. Consequently,
long wavelengths the structure factor~and quantities with
simple relations to the long wavelength parts of the struct
factor! is expected to grow asa3/2 for small shear rates. Fo
wave numbers in the rangeq.a1/2, the behavior crosse
over to ana2 dependence for small shear rates. The cor
sponding expression can be found in@13#, @Eq. ~28!#.

In the opposite limit of infinite shear, Eq.~11! becomes
even iny and simplifies to give

ncf `~q!52
3

8p2E dx
y21z2

@~x1q!21y21z2#2
ncc~ uxu!,

~13!

where now f `(q) is defined without the restriction thaty
.0 in the integration. Hence, we can rewrite the infin
shear structure factor as

S`~q!5
1

12nc@c~q!1 f `~q!#
. ~14!

From this simplified expression, one easily determines
critical packing fractionfcr , below which no instability
arises even for infinite shear rate. For the hard sphere m
considered, that packing fraction was found to be 37.5%
three dimensions.

More generally, the behavior of the system, as sugge
by the structure factor is one of monotonically increasi
disorder in the flow direction (y), with increasing shear, bu
a more complex behavior in the shear gradient direction (x).
In that direction, in Fourier space, the structure factor a
flattens out for most wavelengths, except in the neighb
hood of the main peak, where the structure factor initia
decreases, but then increases, and eventually diverge
some large value of the shear rate when the packing frac
is greater than the critical packing fractionfcr , mentioned
above.

As will be seen below, many of those predictions will b
verified in the present work. However, the prediction that
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3104 PRE 59B. MORIN AND D. RONIS
wavelength of the instability increases slightly with the pac
ing fraction of the system turns out to be wrong as far as
two-dimensional stochastic simulations are concerned.

B. Moment equations

To further clarify the mechanisms at work in the creati
and stabilization of the layered states under shear, we
examine approximate equations describing the evolution
the first and second colloid density moments. These
quantities characterize the essential physics; the first mom
tracks the emergence of order in the system, and the se
describes the evolution of fluctuations as the layers deve
and stabilize. Dynamical equations for the moments w
derived from the Fokker-Planck equation corresponding
the model equations in the limit of infinite Prandtl numb
~or high friction!, cf. Eq. ~7!. In the original ~nonrescaled!
units, the Stratonovich form of the Fokker-Planck equation

]P~@N#,t !

]t
52E dk

d

dN~k!F2D0

k2N~k!

S~eq!~k!
1v0ky

]N~k!

]kx

2D0nck
2~2p!d

d

dN~2k!

2
kBT

h E dk1

~2p!dE dk2

~2p!d

k•FI k1
•k2

k1
2

3N~k2k1!S N~k2!

ncS
~eq!~k2!

1~2p!d
d

dN~2k2!D
3N~k12k2!GP~@N#,t !. ~15!

Again we emphasize the need for the active-mixing te
appearing in the above equation. It enables the system
-
e

w
of
o
nt
nd
p
e
o

s

to

relax to equilibrium, as can be seen by replacing the dis
bution P(@N#,t) by the equilibrium distribution given by

P~eq!~ @N#,t !}expS 2
1

2E dk

~2p!d

N~k!N~2k!

ncS
~eq!~k!

D , ~16!

and seeing that we indeed get@]P(eq)(@N#,t)/]t#50. Equa-
tion ~15! clearly shows the physical origin of the active
mixing term. Just as the random fluctuations in the num
density ~third term on the right-hand side! are balanced by
the diffusion term,~first term on the right-hand side!, the
random fluctuations in the fluid velocities~fifth term on the
right-hand side! which couple to¹N in Eq. ~1!, are compen-
sated by the active-mixing term~fourth term on the right-
hand side!.

A hierarchy of equations governing the nonequilibriu
equal time moments of the distribution can easily be o
tained from Eq.~15!; for example, the first two moment
obey

]^N~k!&
]t

5S 2
D0k2

S~eq!~k!
1v0ky

]

]kx

2
kBT

h E dk1

~2p!d

k•FI k1
•k

k1
2 D ^N~k!&

2
kBT

h E dk1

~2p!dE dk2

~2p!d

k•FI k1
•k2

k1
2

3
^N~k2k1!N~k12k2!N~k2!&

ncS
~eq!~k2!

~17!

and
]^N~k!N~k8!&
]t

5H F2
D0k2

S~eq!~k!
1v0ky

]

]kx
2

kBT

h E dk1

~2p!d

kk :FJ k1

k1
2 G ^N~k!N~k8!&2

kBT

h E dk1

~2p!d

kk 8:FJ k1

k1
2

3^N~k2k1!N~k81k1!&2
kBT

h E dk1 dk2

~2p!2d

kk2:FJ k1

k1
2

^N~k2k1!N~k12k2!N~k2!N~k8!&

ncS
~eq!~k2!

J
1$k↔k8%12D0nck

2~2p!dd~k1k8!, ~18!
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where$k↔k8% denotes the preceding terms in curly brack
with k andk8 interchanged.

In the homogeneous phase, i.e., for shears below any
sition to the lamellar phase, an approximate equation for
sheared structure factor can be obtained by assumin
Gaussian form for the nonequilibrium distribution functio
~with, for now, zero mean! and introducing the structure fac
tor, cf. Eq. ~9!; with this, Eq. ~17! is trivial, and Eq.~18!
becomes

]S~k!

]t
5S 2

2D0k2

S~eq!~k!
1v0ky

]

]kx
D S~k!12D0k2

2
2kBT

h
S~k!E dk1

~2p!d

k•FJ k1
•k

k1
2

3FS~k2k1!S 1

S~eq!~k!
2

1

S~eq!~ uk12ku!
D 11G

1
2kBT

h E dk1

~2p!d

k•FJ k1
•k

k1
2

S~k2k1!, ~19!

in which the symmetryS(k)5S(2k) was used.
The integrals in this expression have UV divergences~in

the limit of infinite cutoff! that are the usual ones associat
with mode-coupling theories of the diffusion coefficient, c
Ref. @29#. For example, in mode-coupling theory it is we
known that the zero-frequency, one-loop, equilibrium colle
tive diffusion constant is

DC
~eq!~k!5

D0

S~eq!~k!
1

kBT

r E dk1

~2p!d

3
k̂•FI_k1• k̂

DC
~eq!~ uk2k1u!uk2k1u21nk1

2

3
S~eq!~ uk2k1u!

S~eq!~k!
. ~20!

Since the boundary conditions on the surface of the collo
particles are not explicitly included in mode-coupling the
ries, their effects appear in the form of the short-wavelen
divergences if the UV cutoffs are set to infinity. This sen
tivity to the short-wavelength details should be expec
since the form of the Stokes-Einstein relation for the se
diffusion constant depends on the nature of the bound
condition used for the fluid motion at a colloidal particle
surface; for example, in three dimensions,

DSE5
kBT

jphs
, ~21!

wherej is 3 for stick boundary conditions, 2 for slip, and 5
at the surface of a bubble. Note however, that whatever
boundary condition, the basic scaling properties of
Stokes-Einstein relation are the same, and, moreover,
involve single-colloid particle properties~for example, the
colloid density or colloid-colloid structure factor do not a
s

n-
e
a

-

al
-
h
-
d
-
ry

e
e
ly

pear!. The scaling of the diffusion constant with particle si
is also recovered in mode-coupling theory if the UV cutoff
proportional tos21, cf. Ref. @29#.

All the UV divergences in both Eqs.~19! and ~20! have
the same origin, and are fixed by replacing the bare diffus
constant,D0, by the finite, physical diffusion constantDSE,
and an explicitly infinite~actually strongly cutoff-dependent!
part that cancels the UV divergences. To one loop order,
correction to the self-diffusion constant is

D05DSE2
kBT

h E dk1

~2p!d

k̂•FI k1
• k̂

k1
2

, ~22!

which is identical to the form derived by Keyes an
Oppenheim@29# in their analysis of the Stokes-Einstein e
pression in mode-coupling theory and which results in
usual scaling properties given in Eq.~21!.

Since the packing fractions required to get an instabi
are high, the use of the Stokes-Einstein relation may be q
tioned. However, theoretical work by Beenakker@30#, ex-
perimental work by Kops-Werkhoven and Fijnaut@31#, and
van Blaaderenet al. @32#, as well as Brownian dynamic
simulations by Rastogi, Wagner, and Lustig@7#, suggest that
the Stokes-Einstein relation between the diffusion coeffici
of the colloidal particles and the fluid viscosity remains
good approximation at high packing fractions, at least fo
system of hard spheres. And although it is of little relevan
to our model, it is interesting to note that the Brownian d
namics simulations of Rastogi, Wagner, and Lustig@7#, lead
to the conclusion that the Stokes-Einstein relation may e
be extended to the nonequilibrium case in the presenc
shear, up until a lamellar phase forms. At that point, t
Stokes-Einstein relation breaks down, which probably me
that the self-diffusion coefficient is no longer simply relat
to the collective diffusion constant since long-range orde
now present. These simulations also show that the instab
that arises is independent of the system size.

In the Introduction we mentioned that our calculation i
cludes a kind of hydrodynamic interaction. This should
apparent from the preceding equations, all of which cont

the Oseen tensorFJ k /k2. Nonetheless, the connection b
tween the mode-coupling approach and the usual ones
study hydrodynamic interactions in suspensions, cf. R
@33–35#, is less obvious. To see how they compare, we
Eq. ~22! in ~20! to show that

DC
~eq!~k!5

DSE

S~eq!~k!
1

kBT

h

3E dk1

~2p!d

k̂•FI k1
• k̂

k1
2

S~eq!~ uk2k1u!21

S~eq!~k!

~23!

in the infinite Prandtl number limit. To first order in densit
Eq. ~23! reduces to the expression obtained by Altenber
and Deutch, cf. Ref.@35#. For example, using the Percu
Yevick hard sphere structure factor, this givesDC

(eq)(k
50)/DSE;112f; Batchelor’s calculation @34#, gives
DC

(eq)(k50)/DSE;111.45f. Finally, we note that the
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active-mixing induced hydrodynamic interactions arise fro
the interaction potentials between the colloidal particles,
in particular will be present in ultradilute, poorly screen
suspensions of charged colloids. While these systems ex
strong interparticle correlations, the traditional correctio
due to hydrodynamic interactions are negligible; nonethel
significant corrections to the diffusion constant will ari
from Eq. ~23!.

If we now rewrite Eq.~19!, eliminating D0 in favor of
DSE using Eq.~22!, in the limit of infinite Prandtl number
Pt→`, we find that

]S~k!

]t
5S 2

2DSEk
2

S~eq!~k!
1v0ky

]

]kx
D S~k!12DSEk

2

2
2kBT

h
S~k!E dk1

~2p!d

k•FJ k1
•k

k1
2

3FS~k2k1!S 1

S~eq!~k!
2

1

S~eq!~ uk12ku!
D

112
1

S~eq!~k!
G1

2kBT

h

3E dk1

~2p!d

k•FJ k1
•k

k1
2 @S~k2k1!21#. ~24!

Equation ~24! is now free of UV divergences. Howeve
there will be IR divergences ford<2 as long asS(k)
ÞS(eq)(k); this divergence arises from the well-known lon
time tail problem in two dimensions, cf. Eq.~20!, which
makesDSE} ln(k) as k→0. Note that since the phenomen
we are concerned with here occur atnonzerowave vectors,
the logarithmic divergence is not numerically significant f
the wave vectors on the two-dimensional lattices used be

To make contact with the linear theory of Ronis@24# it is
instructive to rewrite Eq.~24! as

]S~k,t !

]t
5v0ky

]S~k,t !

]kx
22G~k,t !S~k,t !12N~k,t !,

~25!

where the effective nonequilibrium relaxation rate and no
strength are given by

G~k,t ![
DSEk

2

S~eq!~k!
1

kBT

h E dk1

~2p!d

k•FJ k1
•k

k1
2

3FS~k2k1 ,t !S 1

S~eq!~k!
2

1

S~eq!~ uk12ku!
D

112
1

S~eq!~k!
G , ~26!

and
d

bit
s
s,

w.

e

N~k,t ![DSEk
21

kBT

h E dk1

~2p!d

k•FJ k1
•k

k1
2 @S~k2k1 ,t !21#,

~27!

respectively.
In the steady state,@]S(k,t)/]t#50, and the formal solu-

tion to Eq.~25! is

S~k!5E
kx

` dkx8

v0ky
expS 22E

kx

kx8 dkx9

v0ky
G~k9! D 2N~k8!

for v0ky.0, ~28a!

5E
2`

kx dkx8

v0ky
expS 2E

kx8

kx dkx9

v0ky
G~k9!D 2N~k8!

for v0ky,0, ~28b!

wherek8 has itskx component replaced bykx8 , etc. Note that
Eqs. ~28a! and ~28b! imply that S(k)5S(2k). Also notice
the formal similarity between Eq.~28! and the result for the
linear theory of Ronis, although hereN andG depend onS.
Nonetheless, Eq.~28! is a good starting point for numerica
work ~see below!. Finally, in the plane perpendicular to th
flow direction,v0ky50, the steady-state solution to Eq.~25!
takes the form

S~kx!5
N~kx!

G~kx!
. ~29!

As mentioned in the previous section, simulations confi
that for large shear rates,S(k);1 as long as
(v0s3ky)/DSE@1. SubstitutingS(k2k1 ,t) by 1 in the in-
tegrand of Eqs.~26! and~27! should thus be a good approx
mation to the infinite shear expression forS(kx), and, not
surprisingly, leads to the same expression for the infin
shear structure factor as that obtained in the one-loop ca
lation of Morin and Ronis, cf. Eq.~14!, namely,

S~kx!5
1

12nc„c~kx!1 f ~kx!…
, ~30!

where

f ~kx!52
kBT

DSEh
E dk1

~2p!d

k̂•FI k1
• k̂

k1
2

c~k2k1!, ~31!

c(k) being the equilibrium direct correlation function relate
to the structure factor asS(eq)(k)51/@12ncc(k)#. Note that
for finite shear, Eq.~29! reduces to the one-loop expressio
given in @13# when the expression obtained in the line
theory~zero-loop! is used forS(k) in Eqs.~26! and~27!, and
the nonequilibrium terms are all put into the numerator.

According to the analysis of the preceding section a
@13#, suspensions that are spatially uniform on average
unstable for shear rates beyond some critical value, an
the Gaussian approximation it is straightforward to exte
the analysis to include this case, thereby allowing nonz
^N(k)&. We first split the number density field into two dis
tinct parts by writing
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N~k![^N~k!&1dN~k!,

where ^N(k)&, when nonzero, characterizes the long-ran
order at wave numberk, anddN(k), gives the fluctuations
around the average. Hence,

^N~k!N~k8!&5^N~k!&^N~k8!&1^dN~k!dN~k8!&

[^N~k!&^N~k8!&1ncs~k;k8!. ~32!

Just as above, fluctuations are assumed to have a Gau
distribution~now with nonzero mean!. Here we further sim-
plify matters by making the assumption that the variance
diagonal in wave vectors; i.e., we takes(k;k8)'(2p)dd(k
1k8)s(k). ~More general equations for spatially period
systems are presented in the Appendix.! With these two ap-
proximations, Eq.~17! becomes

]^N~k!&
]t

5F2
DSEk

2

S~eq!~k!
1v0ky

]

]kx
2

kBT

h E dk1

~2p!d

k•FI k1
•k

k1
2

3S s~k2k1!

S~eq!~k!
2

1

S~eq!~k!
112

s~k2k1!

S~eq!~k2k1!
D G

3^N~k!&2
kBT

h E dk1

~2p!dE dk2

~2p!d

k•FIk1•k2

k1
2

3^N~k2k1!&^N~k12k2!&
^N~k2!&

ncS
~eq!~k2!

. ~33!

Finally, note that as in the analysis of the disordered s
described above, the renormalized~physical! Stokes-Einstein
diffusion constantDSE was introduced in the previous equ
tion instead of the bare self-diffusion constantD0.

The full expression for the variance is considerably m
complicated than Eq.~25!, even within the Gaussian ap
proximation. In order to simplify matters, we only present
under the assumption already used above; i.e., that fluc
tions of interest are diagonal. This cannot be exact
^N(k)&Þ0, and more general expressions for spatially pe
odic systems are presented in the Appendix.

After some straightforward algebra, it turns we obtain t
same form as Eq.~24!, with the modification that inside the
various integrands we letS(k2k1)→u^N(k2k1)&u2/(ncV)
1s(k2k1), whereV is the volume of the system. Note th
the volume factor arises from the relation between the tw
point correlation function and the structure factor, cf. Eq.~9!.
In a finite system, the wave vectors are discrete a
(2p)dd(k1k8)→Vdk,2k8 . This modification toS(k) inside
the integrand perhaps should be expected since the total
equilibrium density-density correlation function is the phy
cally relevant quantity, and in fact is justu^N(k
2k1)&u2/(ncV)1s(k2k1). Hence,
e

ian

is

te

e

a-
if
i-

e

-

d

on-

]s~k!

]t
5H 2

2DSEk
2

S~eq!~k!
1v0ky

]

]kx

2
2kBT

h E dk1

~2p!d

k•FJ k1
•k

k1
2

3F „s~k2k1!1U^N~k2k1!&U2/~ncV!…

3S 1

S~eq!~k!
2

1

S~eq!~ uk12ku!
D

112
1

S~eq!~k!
G J s~k!

1
2kBT

h E dk1

~2p!d

k•FJ k1
•k

k1
2

3@s~k2k1!1u^N~k2k1!&u2/~ncV!21#12DSEk
2,

~34!

Apart from the shear term, the terms in the first two lines
the preceding equation are diffusionlike where the nonlin
parts @i.e., those with the integrand depending ons(k) and
^N(k)&] arise from active mixing. The last two lines includ
the usual additive noise for the number density fluctuatio
and multiplicative noise caused by velocity fluctuations th
couple through the convective term.

It is important to realize that Eq.~33! will not necessarily
stabilize if a one-dimensional pattern develops since the p
jection operator will make the cubiĉN(k)& term in the
equation~the nonlinear stabilizing term! zero. Hence, unless
the nonlinear diffusion term stabilizes itself, Eq.~33! has
unstable solutions. Higher-order corrections might cure t
problem. In fact, the one-loop correction to the cubic te
does indeed contain terms independent of the projection
erator which could stabilize the system. However, we do
delve on such matters as this section is mostly intende
show that the instability can be understood in the usual m
ner of simple linear instability in the effective diffusion term

III. RESULTS

The original analysis of the system of equations was d
for a three-dimensional system. For this problem, howev
three-dimensional stochastic simulations are prohibitiv
memory and CPU intensive for the sizes of grid and tim
step that seem to be required for numerical stability. T
forces our investigations to be carried out in two dimensio
Hence, this numerical work cannot be used as a quantita
comparison with the theoretical work of@13#. Instead, we
will make a qualitative comparison with things like the pr
diction that the model equations have an instability to
formation of lamellae, which gives rise to a large peak in t
structure factor, near the main peak of the equilibrium str
ture factor.

Even though the numerical work is done on a tw
dimensional grid, the analytical three-dimensional Perc
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3108 PRE 59B. MORIN AND D. RONIS
Yevick approximation to the equilibrium hard sphere stru
ture factor was used for convenience. One import
consequence of working in two dimensions is that hig
packing fractions are required. This should be expec
since, among other things, the close-pack limit is higher t
in three dimensions. This can be seen more quantitatively
considering the packing fraction below which no lamell
can form, fcr , even at infinite shear. As was mention
above, in three dimensions Eq.~14! leads tofcr50.375. In
two dimensions Eq.~13! becomes

ncf `~q!52
1

16pE dx
y2

@~x1q!21y2#2
ncc~ uxu!. ~35!

The above expression contains an infrared divergence
thus requires a lower limit cutoff similar to those seen in t
mode-coupling theory of the diffusion constant in two d
mensions, cf. Sec. II B. Since the calculations are perform
on a relatively small finite system~albeit with periodic
boundary conditions! we are not too concerned by this an
introduce an IR cutoff in order to estimate the critical pac
ing fraction. Based on the parameters used in the nume
simulations, the lower wave number limit iskmin50.245,
which leads to a critical packing fraction offcr50.558. Fur-
thermore, note thatfcr increases with decreasingkmin , or
equivalently with increasing volume, which implies th
fluctuations prevent ordering in very large two dimensio
systems. This however is irrelevant for our stochastic sim
lations since even withkmin;1024, representing a system
size of the order of 105– 106s, the critical packing fraction
remains around 62%. Consequently, the concentration
colloidal particles needed to get an instability in two dime
sions are high and in the range where freezing is expecte
three dimensions. Despite these drawbacks, we believe
two-dimensional stochastic simulations to be a good tes
short- to intermediate-range aspects of the model under
application of a linear shear gradient.

A. Moment equations

The moment equations were solved numerically in t
ways. In the first, the onset of the instability was examin
by solving Eq.~28! iteratively on a grid. We used the curre
S(k) to calculateN(k8) and G(k9) by fast-Fourier trans-
forms; these were then used to recalculate the structure
tor, the entire procedure being repeated until converge
was obtained. The task is further simplified by noting th
Eq. ~28a! implies that

S~k2Dkxê1!5expS 22E
kx2Dkx

kx dkx8

v0ky
G~k8! DS~k!

12E
kx2Dkx

kx dkx8

v0ky

3expS 22E
kx2Dkx

kx8 dkx9

v0ky
G~k9! DN~k8!

for v0ky.0, ~36!
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with a similar expression forv0ky,0; Eq. ~29! is used for
ky50. In this last expression,Dkx is the lattice spacing in
thekx direction andê1 is a unit vector alongx, and all fields
have the same values ofky . The needed integrations wer
done by linearly interpolatingN(k8) andG(k9) between the
grid points, thereby resulting in expressions containing va
ous error functions~the interpolation is necessary if expre
sions that are valid at small shear are to be obtained!. Finally,
the size of the grid was adjusted so thatS(k);1 could be
used in Eq.~36! outside the grid.

Figures 1 and 2 show some results of this calculation

FIG. 1. Structure factor obtained from the moment equations
the homogeneous phase for a shear rate of 8400DSE/s2 @a
[v0s2/(2DSE)54250# andf50.6. The equilibrium packing frac-
tion was 0.6 and a 2433161 grid with 229.97<kx<29.97 and
219.82<ky<19.82~in units ofs21) was used. Note that an analy
sis of several runs shows thatS(kmax);uv02vcru21.3, wherevcr

'8780DSE/s2 (a54390) is the limit of stability point for this
density.

FIG. 2. The steady-state diffusion Onsager coefficie
G(k,t)S(eq)(k)/k2, cf. Eq. ~26!. The contours show whereG(k,t)
50 with increasing shear. The system and numerical details are
same as in Fig. 1. The inset shows the behavior near a maximu
the structure factor, and in particular shows the quadrupolar pat
suggested by Eq.~A13!.
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PRE 59 3109DISORDER AND ORDER IN . . . . II. . . .
a shear rate close to the instability. In Fig. 1 we see
characteristic distortion of the structure factor at high she
although unlike the linear theories, now there are la
changes in the structure factor forky50. An interesting in-
sight into the nature of the instability is obtained b
considering effective Onsager diffusion coefficien
G(k,t)S(eq)(k)/k2, cf. Eq. ~26!, shown in Fig. 2. For suffi-
ciently high shear, a pair thin crescent shaped regions w
G(k,t),0 appear. As the shear increases the negative re
increases and approaches theky50 line. The inset in Fig. 2
shows the quadrupolar symmetry expected near the p
maxima from the analysis of ordered periodic states give
the Appendix, cf. Eq.~A13!.

The appearance of a region withG(k,t),0 does not im-
ply that the homogeneous state is unstable. ForkyÞ0, the
shear stretches fluctuations in the shear-gradient (x) direc-
tion, specifically, askx→kx1v0kyt; hence, fluctuations with
wave numbers initially in the unstable regime, will gro
only until their wave numbers stretch to a point where th
leave the region of negativeG. Of course, the rate of stretch
ing depends onky , and indeed the instability occurs whe
the negativeG region reaches thekx axis.

In a second approach, the coupled Eqs.~33! and~34! were
simulated numerically on a rectangular grid. The lattice w
chosen to have 243 grid points in thekx direction with
229.97<kx<29.97 in units of 1/s, and 81 grid points in the
ky direction with 29.91<ky<9.91. A nonsquare lattice i
used because in the flow direction~the y direction!, the high
shear structure factor goes to unity rapidly with increas
wave number, whereas the same is not true in the shear
dient direction~the x direction!. In addition, reducing the
wave number range in they direction allows for more reso
lution at small wave numbers where interesting behav
may be found. The rescaled parameters described previo
were used, together with a packing fraction of 60% an
shear rate ofa55000. The same parameters will be used
the Langevin simulations.

The infinite Prandtl number limit moment equations we
used, including terms arising from velocity noise fluctu
tions. The structure factor and Onsager diffusion coeffici
for this case are shown in Figs. 3 and 4. The main result
this exercise are threefold. First, a sinusoidal pattern de
ops with a wave-vector corresponding to the position of
main peak of the equilibrium structure factor, apparently
dependent of the initial conditions. Specifically, two initi
configurations were considered. One had^N(k)& small and
random~as white noise! and s(k)5S(eq)(k). The other had
^N(x)& set to sin(kx8x) plus small fluctuations, wherekx8
Þkmax (kmax is the position of the main peak of the equilib
rium structure factor! and where the initial variance was s
to s(k)51 for kyÞ0 and s(k)5S(eq)(k) for ky50. Both
cases led to the same steady state.

Secondly, within a few diffusion times, the nonlinear d
fusion operators of botĥN(k)& and s(k) evolve from a
configuration with a band of unstable modes, cf. Fig. 2, t
configuration where a single grid point ink space remains
unstable, cf. Fig. 4. Note that the quadrupolar symmetry s
in the disordered phase is still very apparent. Furtherm
the value of the nonlinear diffusion operators at the unsta
grid point is about211 at one diffusion time and slowly
increases thereafter. The relevance of this value will be
e
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cussed later in the light of the Langevin simulation result
Finally, we show the density-density correlation functio

s(k), cf. Eq.~32!, in Fig. 3. Even on the diffusion time scale
the peaks have grown very large. Moreover, the algeb
tails or sidebands suggested by the analysis of spatially
riodic states given in the Appendix, cf. Eq.~A14!, are clearly
visible and have the expected symmetry. The numerical d
suggests that the sidebands diverge likeuk2Gu22.7560.25.
This is reminiscent of the Goldstone mode sidebands in x-
scattering from crystals and has important implications
the existence of true long-range order, especially in low s
tial dimensions.

As stated earlier, however, the approximate method
moments outlined in this section has a main drawback in
the diffusion operators may never stabilize. The unsta
modes shown above remain and lead to an ever increa
amplitude of the sinusoidal pattern. At least part of the pro
lem is seen in Eq.~33! where the cubiĉ N(k)& term will
vanish for a one-dimensional pattern because of the pro
tion operatorFIk appearing in the integrand. Higher-ord
corrections most probably cure this problem; one can ea

FIG. 3. The structure factor,s(k), in the ordered phase att
50.3937D0 /s2 whena55000.

FIG. 4. The Onsager diffusion coefficient for the case shown
Fig. 3.
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show that terms arise without the troublesome projection
erator in higher-order perturbative treatments of the eq
tions. Indeed, given how small the unstable regions are
how large and positiveG becomes in the adjacent regions,
the inset of Fig. 4, it is quite reasonable that any mode c
pling between these modes should lead to a stabilizatio
the pattern. Nonetheless, the higher-order corrections
quite complicated and are beyond the scope of this work

The analysis of this section has allowed us to picture
instability to the formation of layers of colloidal particle
flowing at different speeds as a more standard problem
linear instability. Numerical simulations of the coupled equ
tions representing long-range order^N(k)&, and short-range
order s(k) showed that there is a transient time where
growth rate of the layers is single exponential, and for wh
the wave number of the unstable mode corresponds to
position of the main peak of the structure factor, which is
disagreement with our previous predictions based on pe
bation theory that the stripe pattern would form at a low
wave number than the peak position of the equilibrium str
ture factor.

B. Langevin equations

The high-friction limit of the model equations with ran
dom noise, Eq.~7!, was simulated numerically on a two
dimensional grid of 1283128 points using a finite differenc
scheme for spatial derivatives and a stochastic Runge-K
algorithm due to Helfand@36,37# for the propagation in time
Although several more elaborate numerical schemes@38#
were tried, Runge-Kutta gave the best results. For the
pose of the stochastic simulation, it was practical to use
rescaled units and fields described earlier.

In rescaled units, the time increment used in the stocha
simulations isDt51026 and the distance between neighbo
ing lattice sites isDx50.1, to insure a sufficiently large
wave-vector range~ i.e., 220,kx,ky,20 in units of 1/s).
The only input parameter left is the Prandtl number. Typi
values are of the order ofPt5106, which proved to be im-
practical for numerical calculations as theDt needed to in-
sure stability of the velocity equations was much too sm
for the time scale of the number density equation. Hen
two limit cases were considered. First, a much sma
Prandtl number was used, namely,Pt5103, and second, the
infinite Prandtl number equation, Eq.~7!, was used.

The infinite Prandtl number equation also proved to
difficult to integrate numerically, and in order to use t
stochastic Runge-Kutta algorithm, we have neglected
multiplicative velocity noise terms. A crude estimate sho
that these terms are only important compared to the u
convective terms whenaky<2bkmax, and are thus impor-
tant only for very long wavelength fluctuations~in the veloc-
ity direction! at high shear rates.

Both of the methods just described gave comparable
sults and those presented were obtained from stoch
simulations of the infinite Prandtl number equations.

All runs were done at a packing fraction of 60%, whic
insures that the system becomes unstable at a finite shea
~at least from estimate from a one-loop correction to me
field theory!, even in two dimensions. A sample run w
performed, starting with a shear rate ofa51000. When, af-
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ter two to five diffusion times, no appreciable increase in
main peak of the structure factor was seen, the shear rate
increased, and the run continued. This was repeated a
times to make sure it was reproducible and independen
initial conditions. An appreciable increase in the main pe
of the structure factor was seen after a few diffusion tim
once the shear rate was increased toa54500, although a
clear striped phase was not seen within a few diffusion tim
At a55000, the system is clearly unstable to the format
of stripes in colloid concentration, and we report on this ca
in detail below. Finally, note that while the critical value o
a is comparable to that obtained from the moments anal
~where we find thatacr54760 for the grid parameters use
in the Langevin calculation! strictly speaking, the ratio of
D0 /DSE ~which should be of order unity! must be known
before a rigorous comparison can be made.

The following results of the numerical simulation sho
various aspects of the evolution of a system, as describe
our model equations, from a homogeneous state to a str
phase. Such a steady state is reached with a packing fra
of 60% and a shear rate ofa55000. Figure 5 shows the
configuration at various stages in the evolution of the m
peak. At very early times, the structure factor already sho
the effect of shear, although the number density still appe
perfectly homogeneous. Very quickly, the structure fac
takes the form depicted in the upper part of Fig. 5, i.
S(kx ,ky);1 for kyÞ0, and all subsequent changes occ
along the lineky50. There, the main peaks ofS(kx ,ky
50) grow, while for lower wave vectors,S(kx ,ky50) is
basically unchanged from its equilibrium values. This is

FIG. 5. ConfigurationsN(r ) and S(k) obtained by solving the
Langevin equations. The system parameters are as in the prec
figures. The results are averaged over a small time window~500
time steps or 0.004 diffusion times atkmax).
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different outcome from what the perturbative calculation
@13# predicted, i.e. a flattening ofS(kx ,ky50), except in the
neighborhood of the main peak. For wave vectors larger t
the equilibrium main peak, large fluctuations preclude
from determining whether the structure factor in the sh
gradient direction flattens or retains its equilibrium sha
Referring again to Fig. 5, after 4 to 5 diffusion times, strip
are discernible, and the peaks ofS(kx ,ky50) are now of the
order of 1000. As the system evolves, the stripes beco
better defined and the peaks grow until saturation is reac
Then, after roughly 18 diffusion times, stripes are clea
seen, and the peaks of the structure factor have stop
growing, having reached a value of about 6000.

The structure factor in the gradient direction reveals
other unexpected feature. Whereas the one-loop perturb
theory predicted that the main peak would shift to a sma
wave number~i.e., larger wavelengths! by as much as 20 to
30% as the instability is approached, Fig. 5 shows the gro
in the structure factor occurring very close to the equilibriu
main peak. The exact position remains uncertain becaus
the finite mesh size, but it is clearly very close to the eq
librium main peak. This is in agreement with the analysis
the moment equations, and is discussed in more detail in
Appendix.

In the flow direction~here they direction!, the structure
factor flattens out, which means that under large shear,
system becomes almost perfectly disordered in the flow
rection, cf. Fig. 5. This is in accord with the observati
made in@13#; i.e., linear theory@24# is a good approximation
as long asaky@1, and consequently, for large shear rat
nonlinearities are important only in the plane perpendicu
to the velocity direction, with the system being strongly d
ordered elsewhere.

Figure 6 shows the evolution of the main peak with tim
The inset, depicting the same data on a semilog plot, rev
that the long-range order develops following a single ex
nential growth until close to saturation. Furthermore,
slope of the semilog plot has roughly the same value as
found by the moments’ method. That is, the growth evolv
according to exp(t/t), where 10,1/t,12. Note that while
the Langevin approach seems to saturate, presumably

FIG. 6. The evolution of the peak maximum for the Langev
calculation shown in Fig. 5.
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cause of higher-order mode-coupling effects than those c
sidered in the moments approach, the saturation amplitud
the density modulation is quite large. This suggests that
model probably needs additional stabilizing terms such
higher-order nonlinear corrections associated with
chemical potential~which involve the higher-order direc
correlation function! or with the Onsager coefficients them
selves; neither of these quantities is known particularly w
and moreover would greatly increase the numerical ef
required to solve the resulting equations. A phenomenolo
cal approach to this problem will be reported elsewhere.

When the system was left to run longer in the layer
regime, the runs sometimes became numerically unstab
large fluctuations occurring within the stripes. To see if th
was only a numerical artifact, the time step was reduc
further, to Dt51027, and the system was run for an add
tional diffusion time without incurring any instability
Hence, the stripe pattern seems to be a stable steady-
configuration, although it is hard to confirm because of
limited number of diffusion times we are able to sample
such smallDt ’s. It is also possible that we are encounteri
turbulence effects which prove to be unstable for our num
cal scheme. Note that such effects were seen in experim
such as those of Ackersonet al. @11#, in which ‘‘ . . . occa-
sional plumes of disordered regions. . . ’’ were reported.
For our stochastic simulations, the sudden occurrence
large fluctuations within a stripe might correspond to an i
tial turbulent state leading to the ‘‘plumes’’ mentione
above.

Finally, note that the moment analysis and the full Lang
vin simulations give very similar descriptions of the onset
the instability and of the initial growth of the pattern. The
differ in that the former does not seem to stabilize~for rea-
sons described above! and the latter does not exhibit an
Goldstone mode sidebands, cf. Figs. 3 and 5. There are
eral possible explanations for this difference. First, this i
strongly driven nonequilibrium system and there is noa pri-
ori reason why Goldstone modes should be there, theap-
proximatemoment analysis notwithstanding. Another pos
bility is that the two calculations handle finite size effects
subtly different ways, leading to a quenching of these lon
wavelength fluctuations in the Langevin approach. Finally
is clear that the moment analysis is missing something, s
it does not seem to stabilize; the resulting structure fac
seem to diverge, and it is likely that there is a concomit
amplification of the sidebands. Hence, they may be ther
the Langevin approach, but they may be too small to see

IV. CONCLUSIONS

The main goal of this work was to determine whether t
instability toward the formation of a lamellar phase predict
theoretically @13#, is indeed present at the nonperturbati
level for the model represented by Eqs.~1! and ~2!. This is
confirmed either by numerical analysis of the moment
Langevin equations. Because of computing constraints,
stochastic simulations were performed on a two-dimensio
grid, which precluded quantitative comparison with thre
dimensional calculations. Still, many interesting qualitati
comparisons were obtained. First and foremost, it was fo
that the model does indeed go through a phase transfo
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tion at high enough packing fraction and shear rate, to a n
phase where colloidal particles align themselves in stri
along the flow direction. Hence, a simple continuity equat
for the number density of colloidal particles coupled to t
Navier-Stokes equation for the fluid velocity with an add
active-mixing term~required by detailed balance, and wi
no adjustable parameters! reproduce many features seen
various experiments and simulations on colloidal susp
sions. The Langevin simulations also reveal that apart fr
early times, long-range order develops as a single expo
tial growth, up to late times when saturation occurs.

This suggests the presence of the usual linear instab
and is revealed in the moments’ method where the theor
reformulated in an approximate fashion into relatively sim
diffusionlike equations for the first and second mome
which represent the developing long-range order and
short-range order, respectively. We have shown that the
finite shear limit correction to the structure factor found e
lier by different perturbative methods@13# is easily recovered
within this approach. Again with the help of numerical int
gration on a grid, the deterministic moments’ equations
studied. We find that in roughly a diffusion time, the nonli
ear diffusion operators evolve towards a steady state
which an original band of unstable modes shrinks to a sin
grid point ink space, and that the value of the unstable mo
corresponds to the single exponential growth rate seen in
Langevin simulations. Furthermore, as for the Lange
simulations, the wave number corresponding to the wa
length of the lamellar pattern corresponds almost exactly~as
far as can be resolved on our grid! to the position of the main
peak of the equilibrium structure factor, which is contrary
results of our previous theoretical analysis. Apart from th
use in clarifying the single exponential growth~and maybe
the chosen wavelength of the layers! the moments’ equation
are of limited use because the projection operator appea
in the integrands~a result of the assumed incompressibil
of the fluid! make for the vanishing of the stabilizing nonlin
ear term once a periodic pattern develops. Higher-order
rections would thus be needed to cure this problem.

In effect, we have shown through numerical simulatio
that a model based on simple symmetries contains the es
tial ingredients to reproduce many features of sheared co
dal suspensions.
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APPENDIX A: PERIODIC SYSTEMS

For spatially periodic states,

^N~k!&5(
G

^NG&~2p!dd~k2G! ~A1!

and

s~k;k8!5(
G

sG„~k2k8!/2…~2p!dd~k1k82G!,

~A2!
w
s

n

-
m
n-

y,
is

s
e

n-
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e

in
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e
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ir

ng

r-

s
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whereG is a reciprocal lattice vector for the periodic syste
and wheres(k;k8) is the structure factor introduced in Eq
~32!. The discrete Fourier coefficientŝNG& are obtained
from ^N(r )& in the usual manner, that is

^NG&[E
v

dr

v
eiG–r^N~r !&, ~A3!

wherev is the volume of the primitive lattice cell. Similarly

sG~k![E
v

dR

v È dr eiG•R1 ik•rs~R1 1
2 r ;R2 1

2 r !, ~A4!

wherencs(r ;r 8) is the real-space, two-point density cum
lant, cf. Eq.~32!. Sinces(r ;r 8) is a symmetric function ofr
andr 8, it follows thatsG(k) is an even function ofk. Equa-
tion ~A2! is tantamount to assuming that

s~r ;r 8!5F„ 1
2 ~r1r 8!;r2r 8…, ~A5!

where F(R;r ) is periodic in R with the periodicity of the
lattice.

The dimensionality of the reciprocal lattice can be le
than that of the system, and in particular, we will assume t
there is no order in the direction of the shear velocity (y),
and thus,Gy vanishes. This has the effect of eliminatin
many of the shear convective terms. In order to see how
comes about for the variance, we let

K[k1k8 and k[~k2k8!/2, ~A6!

from which it follows that

ky

]

]kx
1ky8

]

]kx8
5Ky

]

]Kx
1ky

]

]kx
. ~A7!

Thus, the factors ofd(k1k82G) appearing in Eq.~A2! al-
low us to drop the convective terms inKy when there is no
periodicity in the y direction. On the other hand, the conve
tion still acts onk, which, cf. Eq. ~A5!, corresponds to a
relative coordinate.

By using Eqs.~A1! and~A2! in Eq. ~17!, in the Gaussian
approximation, we find that

]^NG&
]t

52(
G1

GG;G1
^NG1

&2
kBT

h (
G1 ,G2

G•FJ G1
•G2

G1
2ncS

~eq!~G2!

3^NG2G1
&^NG12G2

&^NG2
&, ~A8!

where
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GG;G[
DSEG

2

S~eq!~G!
1

kBT

h E dk1

~2p!d

G•FJ k1
•G

k1
2

3Fs0~G2k1!S 1

S~eq!~G!
2

1

S~eq!~ uG2k1u!
D

112
1

S~eq!~G!
G ~A9a!

and

GG;G1
[

kBT

h E dk1

~2p!d
F G•FJ G2G1

• k1

uG2G1u2S~eq!~k1!

3sG2G1
„k12~G2G1!/2…
1
G•FJ k1

•G1

k1
2

sG2G1
„~G1G1!/22k1…

3S 1

S~eq!~G1!
2

1

S~eq!~ uG12k1u!
D G
for GÞG1, ~A9b!

where we have also introducedDSE, cf. Eq. ~22!. Note that
the diagonal part ofG is equivalent to the diffusion operator
obtained in the text; i.e.,GG;G5G(G,t), cf. Eq. ~26!. Also
note that the nonlinear terms vanish for one-dimensional
terns; this has some interesting implications for tw
dimensional systems, as discussed in the text.

By using Eqs.~A1! and ~A2! in the general second mo
ment equations, cf. Eq.~18!, and making the Gaussian ap
proximation, it follows that
]sG~k!

]t
5v0ky

]sG~k!

]kx
1H F2

DSEu
1
2 G1ku2

S~eq!~ u 1
2 G1ku!

2
kBT

h E dk1

~2p!d

~ 1
2 G1k!~ 1

2 G1k!:FJ k1

k1
2 S 12

1

S~eq!~ u 1
2 G1ku!D GsG~k!

2
kBT

h F (
G1 ,G2

~ 1
2 G1k!~2 1

2 G1k1G2!:FJ ~21/2!G1k1G1

u2 1
2 G1k1G1u2ncS

~eq!~ u2 1
2 G1k2G2u!

^NG2G1
&^NG12G2

&sG2
„k2 1

2 ~G2G2!…

1 (
G1 ,G2

~ 1
2 G1k!~G12G2!:FJ 2

1
2 G1k1G1

u2 1
2 G1k1G1u2ncS

~eq!~ uG12G2u!
^NG2G1

&^NG12G2
&sG2

„k2 1
2 (G2G2)…

1 (
G1,G2

~ 1
2 G1k!~G12G2!:FJ G2G2

uG2G2u2ncS
~eq!~ uG12G2u!

^NG2G1
&^NG12G2

&sG2
„k2 1

2 ~G2G2!…

1(
G1

E dk1

~2p!d

~ 1
2 G1k!~2 1

2 G1k1G1!:FJ k1

k1
2S~eq!~ u2 1

2 G1k1G1u!
sG1

„k2k11 1
2 ~G2G1!…sG2G1

„k1 1
2 ~G11G!…

1(
G1

E dk1

~2p!d

~ 1
2 G1k!„2 1

2 G2k1k11G1…:FJ k1

k1
2S~eq!~ u2 1

2 G2k1k11G1u!
sG1

„k2k11 1
2 ~G2G1!…sG2G1

~k1 1
2 G1!

1 (
G1ÞG

E dk2

~2p!d

~ 1
2 G1k!k2:FJ G2G1

uG2G1u2S~eq!~k2!
sG1

„k2 1
2 ~G2G1!…sG2G1

„

1
2 ~G2G1!2k2…G

2
kBT

h (
G1

~ 1
2 G1k!~ 1

2 G2k!:FJ ~1/2!G1k2G1

ncu
1
2 G1k2G1u2

^NG2G1
&^NG1

&J 1$k↔2k%12DSEk
2dG,0

2
2kBT

h E dk1

~2p!d

~ 1
2 G1k!~ 1

2 G2k!:FJ k1

k1
2 @sG~k2k1!2dG,0#, ~A10!
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where Eq. ~22! has again been used. If we assume t
sG(k)50 for nonzeroG, Eq. ~A10! becomes

]s0~k!

]t
5v0ky

]s0~k!

]kx
22G0~k,t !s0~k!12N0~k,t !,

~A11!

where

G0~k,t ![
DSEk

2

S~eq!~k!
1

kBT

h E dk1

~2p!d

kk :FJ k1

k1
2

3Fs0~k2k1!S 1

S~eq!~k!
2

1

S~eq!~ uk2k1u!
D

112
1

S~eq!~k!
G1

kBT

h (
G1

kk :FJ k2G1

uk2G1u2nc

3u^NG1
&u2S 1

S~eq!~k!
2

1

S~eq!~G1!
D ~A12a!

and where

N0~k,t ![DSEk
21

kBT

h E dk1

~2p!d

kk :FJ k1

k1
2 @s0~k2k1!21#

1
kBT

h (
G1

kk :FJ k2G1

ncuk2G1u2
u^NG1

&u2. ~A12b!

For disordered states,^NG& vanishes, and the noise and r
laxation rate are identical to those introduced in the text,
Eqs. ~27! and ~26!. In addition, if we take the continuum
limit, i.e., we let (G1

→V*dG/(2p)d and ^NG&
→^N(G)&/V, we obtain Eq.~34!.

There are several conclusions that can be drawn from
approximate equations of motion for the first two momen
Eqs. ~A8! and ~A11!. First, notice that the sum over wav
numbers in Eq.~A12a! can diverge ask approaches a recip
rocal lattice vector, and perhaps more problematically,
divergent terms will be both positive and negative depend
on the direction of approach. One way that this can
avoided entirely is that the reciprocal lattice vectors hav
magnitude corresponding to an extremum of the equilibri
structure factor. In this event, the divergence disappears
the corresponding term in the sum in Eq.~A12a! becomes
t

f.

e
,

e
g
e
a

nd

kBTG1
2u^NG1

&u2

8hnc
S ]2@S~eq!~k!#21

]k2 D
k5G1

sin2~2u!,

~A13!

ask→G1, whereu is the angle betweenk2G1 andG1. The
term now has a definite sign, and in particular is posit
whenG1 corresponds to a minimum of the equilibrium stru
ture factor. Indeed, our numerical work confirms these p
dictions, cf., e.g., Fig. 4.

While the preceding argument suggests that any pat
should arise with a characteristic wave vector correspond
to the main structural peak of the equilibrium structure fa
tor, it is by no means a proof, nor does it imply that a stea
state exists. In particular, the nonlinear terms in Eq.~A8!
vanish identically for one-dimensional patterns, and hen
for the two-dimensional numerical studies presented in
text. Thus, the existence of a steady state implies that ei
GG1 ,G1

50, cf. Eq. ~A9a! or that other nonlinearities be in
troduced, either as corrections to the Gaussian approxi
tions used to analyze the Fokker-Planck equation, or as
rections to the model.

If a steady state exists, we can formally solve Eq.~A10!,
thereby obtaining the same forms as found in Eq.~28!, with
G0(k,t) andN0(k,t) substituted forG(k) andN(k), respec-
tively. ~Of course, for this to work, we require thatG0(k,t)
.0 whenky50). The discrete terms inN0(k,t) are inter-
esting; they diverge whenk approaches a reciprocal lattic
vector, and while this divergence will be smeared out by
integrations overkx in Eq. ~28!, it will become more and
more important asky→0. Indeed, forky50 we can use Eq.
~29! and conclude thats0(k) is uk2G1u22 singular in the
ky50 plane. This is not totally surprising, and is reminisce
of the Goldstone-mode singularities caused by phonon
crystals@39#, although here the shear makes them very
isotropic. More generally, forky sufficiently small, we can
ignore the effects of convection, and hence, Eq.~A12b! sug-
gests that

s0~k!}
sin2~u!

uk2G1u22h
, ~A14!

where the exponenth will be nonzero if G0(G1,t);uk
2G1uh as k→G1. Our numerical work suggests that 0.5<
2h<1.
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