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Disorder and order in sheared colloidal suspensions. Il. Stochastic simulations
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Motivated by predictions of previous theoretical wgB< Morin and D. Ronis, Phys. Rev. T, 576(1996]
we perform two dimensional stochastic simulations of sheared colloidal suspensions, governed by stochastic
differential equations based on simple symmetries such as detailed bébariitee reversal symmetry of the
action, which take the form of a modified fluctuating Navier-Stokes equation describing the local velocity of
the fluid, coupled to a generalized convective-diffusion equation for the colloid number density. The results of
the stochastic simulations are in agreement with earlier results based on the same model equations; specifically,
there exists a transition in the homogeneous colloidal system to a layered phase at high shear rate and packing
fraction. Additional insight is obtained through the analysis of the approximate equations for the first and
second moments, derived perturbatively from the Fokker-Planck equpBb@63-651X%99)14502-1

PACS numbegp): 82.70-y, 64.60.My

[. INTRODUCTION is seen at large enough packing fractions. As the shear rate is
increased past the shear thickening rediwhether continu-
Rheology, the study of the properties of flowing materials,ous or discontinuoysshear thinning resumes. Hoffman as-
and, in particular, of flowing colloidal dispersions, has longsociated the discontinuity in viscosity to an order-disorder
been an area of active research. In practice, colloidal suspetransition in which the system, originally crystalline, degen-
sions take many forms, such as paint, oil, grease, and eveftates to a less ordered state. Liquid colloidal suspensions
mud and foods such as sauces, among other things. The éfave the same behavior except that the discontinuous in-
fect of shear on these systems is of practical interest sincgrease in viscosity is associated with mereasein order.
their fabrication and use often involve mixing of some sort.past the discontinuity, the system is thought to order into
At the same time, the large variations in viscosity seen irplanes of colloid flowing with constant velocity over each
these systems as a function of shear rate and concentratigther, thus reducing the viscosity as this new configuration
could be better exploited once a better understanding of thgllows for a flow with less collisions and/or hydrodynamic
phenomena and of the role of the relevant parameters igteractions between particles.
reached. Nonequilibrium molecular dynamics simulations by
Colloidal suspensions are comprised of microscopic pargErpenbeck[2], Woodcock[3], Heyes, Morriss, and Evans
ticles, typically having a radius varying from 100 nm to [4], and Stevens, Robbins, and Be[&, as well as nonequi-
10,000 nm in magnitude. Because they exhibit all phases dfbrium Brownian dynamics simulations by Xue and Grest
condensed systems, i.e. gas, liquid, crystalline, and glasgg] and Rastogi, Wagher, and Lustj@], seem to confirm
they are ideal to study equilibrium and non-equilibrium as-this scenario, although these simulations do not include the
pects of phase transitions. Perhaps most important is theilnderlying solvent or concomitant hydrodynamic interac-
large diffusion time,rp, which makes colloidal dispersions tions. In addition, many of these simulations lead to what
very useful in the investigation of non-equilibrium phenom-many consider an overly large ordered region in the shear
ena, and more specifically, of the effects of applied shearate versus volume fraction phase diagram. The work by
stresses on liquids. For example, consider a colloidal particl¢itchell and Heyeg8] includes many-body hydrodynamics
with an effective diameter af~10"* cm and with a diffu- interactions in the Stokes approximation. The inclusion of
sion constanD,~10"8 cn?/s. The time for the colloidal these far-field hydrodynamics interactions do not reduce the
particle to diffuse by a lengthr is of the order of,  size of the ordered region in the phase diagram, and may in
~0?/Dg~1 s. Consequently, for concentrated suspensiongact promote the formation of layers. Hence, short-range hy-
where the typical correlation length and inter-particle dis-drodynamics forces are thought to have an important role in
tance isO( o), the effects of a linear shear gradient are ex-building a realistic model for nonequilibrium simulations of
pected to manifest themselves once the shear #gteis of  colloidal suspensions.
the order of 1#p=1 s %, which is well within the range of The above calculations find instantaneous configurations
experiments. Typical small molecule fluids on the otherthat exhibit layering or string formation under shear. For
hand, have diffusion times 1®-10'2 times larger, thus re- example, the structure factors of Xue and Grest's develop
quiring large shear rates, unreachable experimentally. large peaks in the neighborhood of the equilibrium main
Earlier work by Hoffman{ 1] on crystalline phases of col- peak for wave vectors along the shear gradient direction,
loidal suspensions shows the typical phenomena seen thereby signaling ordering in that direction at a particle sepa-
most such systems under shear; whether the equilibrium statation close to the equilibrium average particle distance. For
is crystalline or liquid, the viscosity initially decreaseshear a certain range of shear rates, they also find a large peak in
thinning), and then, in most cases, increasasear thicken- the structure factor for wave vectors along the vorticity di-
ing) before a(sometimes discontinuoumcrease in viscosity rection (perpendicular to the flow and shear gradient direc-
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tion) in the vicinity of the second peak of the equilibrium k> (wy0o)/Dy (whereo is the hard sphere particles’ diam-
structure factor. This suggests further ordering in each planeter, andD is the diffusion constait the nonequilibrium

into strings of particles, with strings in the plane above andcorrections to the structure factor has aﬁ dependence,
below a reference plangvhich flow at different velocities  again for small shear rates. As the shear is increased, the
staggered, in order to maximize the distance between stringsructure factor evolves towards unity everywhere except in
of different velocities. Hence, strings form that are ordered inthe planek,=0, i.e., perpendicular to the flow direction. In

a triangular lattice in the plane perpendicular to the flowthat special direction, the main peak initially decreases, and
direction, while remaining disordered in the flow direction. then increases with increasing shear until, for sufficiently

Both liquid and crystalline colloidal suspensions havehigh packing fraction, it diverges, suggesting the existence of
roughly the same steady-state layered pattern which is modeng-range order at a finite wavelength, and presumably a
ordered than a liquid, but less ordered than a crystal, irrelamellar pattern. A phase diagram in the packing fraction-
spective of whether the zero-shear equilibrium state was ligshear rate plane was constructed having a line at a critical
uidlike or crystalline. In the presence of shear, the main difypacking fraction below which no instability to the formation
ference is in the flow direction, where the crystal may remairof layers exist even at infinite shear, and the spinodal-like
crystalline (if somewhat less ordergdwhereas the liquid line just described. Finally, it was found that the wavelength
remains disordered. Note, however, that flowing colloidalof the instability grows with the packing fraction. Motivated
crystals can have long wavelength instabilities as the motioby these results, here we numerically perform two-
of a crystal plane with respect to another creates a periodidimensional stochastic simulations of Langevin equations
modulation of the elastic propertig®,10]. As a conse- describing the model in question, subjected to a linear shear
quence, the existence of flowing crystals is limited by thisgradient, and report on the results below.
phenomena, the details of which depend on the size and ge- In the next section, the model is presented together with
ometry of the system. some details relating to the stochastic simulation and a non-

Hoffman’s work also suggests that further increasing theperturbative analysis based on moment equations. A numeri-
shear rate after the jump in viscosity leads to a loss of ordercal analysis of approximate equations governing the first and
the system becomes amorphous and then reorders weakly second moments is presented in Sec. Il A and numerical
even higher shear rates. Ackerson and co-worket$ see  results based on a full stochastic simulation of the Langevin
much of the same behavior but are cautious about a simplequations follow in Sec. Ill B. Some concluding remarks are
interpretation of the weak order seen by Hoffman at the highmade in Sec. IV. Finally, an analysis of the moment equa-
est shear. Although light scattering might suggest a reappeations for periodic solutions is contained in the Appendix.
ance of order at very high shear rates, such evidence for
reordering is not seen in neutron scattering. Consequently, Il. THEORY
other effects could be at the origin of the return of irides- o ) ) o
cence at very large shear rates, such as surface induced ef- The stochastic differential equations defining the model
fects[11]. The instability mentioned at the end of the lastare the fluctuating convective-diffusion equation for the col-
paragraph is another possible explanation. In this work, wéoidal number densityN(x,t), and the fluctuating Navier-
focus mostly on the transition to a layered state that probablptokes equation for the local fluid velocity field(x,t). The
corresponds to the resumption of shear thinning, past thixtter equation contains a nonlinear, nonlocal term involving
shear thickening transition. the colloid humber density, called active mixing, that is not

More recently, the hypothesis that an order-disorder tranPresent in traditional hydrodynamics, and is responsible for
sition is associated with a sudden increase in viscosity hagll the new phenomena. It is important to realize that this
been challengefi12]. It is suggested that the formation of New term is by no meared hoc It results from the require-
layers is not necessary to the occurrence of shear thickeningient of detailed balancgl4,15 which insures the system
In our view, this is right, but also consistent with the stan-relaxes to its proper equilibrium in the absence of external
dard view. The shear thickening regime is a two-phase stateerturbations. Hence, the model is based on simple symme-
where “fluctuating” layers coexist with the disordered state.tries and has no adjustable parameters. For more details on
Only at higher shear rates do steady-state layers form, thi§e derivation of the model, and in particular, the origin of
reducing interparticle collisions and allowing shear thinningthe active-mixing term, see, e.g., Reff§6-232.
to resume. Hence, an order-disorder transition occurs not in The equations of motion governing the evolution of the
the shear thickening regime, but at higher shear rates, at tHiglds are
onset of a second shear thinning regime.

In a previous work,[13], we performed a perturbative IN(x.1)
analysis of a model of colloidal suspensions which included ot
hydrodynamic interactions associated with active mixing.
The model equations were the same as those to be used he%',d

=DoV2u(X,t) —v(x,t)- VN(x,t) + £(x,t) (1)

and are described in the next section. It was found that the NV(xXt) Vp(x,t)
system responds nontrivially to the application of a linear = VA, t) = V(X ) - VV(X,t) — :

shear gradient of the fornvy= wyXy, wherewy is the shear

rate. For example, at zero wave number, the direct correla- gT

tion function (and thereby the structure factdncreases as + o m(XDVN(X ) (1), 2

w3?for small shear rates, whereas for sufficiently large wave
numbers along the shear gradient direciiberek,), i.e., for  where
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o odk L NGk IN(K,t) k2 ) ‘ J ) )
,u(x,t)=f(277)de S 3) o= geage N+ 2aky g NG + £k
. o . dk; N(k—ky, D[ _
and with the Gaussian noise distributions defined by the mo- - ! ! ki t)-(—ik
ments, f(zw)d ki Ut( 11t) ( | )
({(x,))=0, (f(x,1))=0, 4 +8n adf dkz k- -koN(ky—Kg,t)
¢ (ZﬂT)d 1
(LO6HL(X' 1)) =2Don(— V?) 8(x—x") 8(t—t'), N(K,,t)
(53) ~ca .l ()
S9(ky)
and

where @k)”Ed]—RllzJ, I[‘}E(kBT027d)/(77D0), d is the
spatial dimension, and the dimensionless shear rate is given
(fi(x, ) f(x",t")) by a=(wo0?)/(2Dy). The rescaled random noise fields
have the same type of distribution as before except for the
_ 1 value of the variance and the fact thatis now transverse.
=2ksT(v/p)[ = V28, = ViVi(5+ V)] These changes appear only in the second moments, which
X S(x—x")8(t—t'), (5p) ~ are now rewritten, again in Fourier space, as

2

wheren, is the number density of colloidal particlgsjs the (E(k,t) (K", t"))y= d(277)"5(k+ k")o(t—t'), (8a
fluid density,D is the diffusion constant of the suspensions Nco

in the solventp is the kinematic viscosity= #/p, wheren
is the dynamic viscosily p is the local pressure, andis the
ratio of the bulk viscosity to the shear viscosity. The defini- ; I 23 d , o

tion of w(x,t) follows from de Gennes’' expression for a (kDK 1)) =2 BkB(2m) Sk k) St —t ).(8b)
generalized diffusion operatp23], as in Ref[24]. The mass

density of the colloidal particles is assumed to be equal to In three dimensions, the Stokes-Einstein relation gives
that of the solvent and both are taken to be incompressiblgk,T)/(D,7) =30, which leads toBn.o%=18¢4, where

and

leading to the following relations: ¢=(ml6)n.o3, is the three-dimensional packing fraction. In
two dimensions, the Stokes-Einstein relation does not hold
p=const, andv-v(x,t)=0. (6)  because the drag coefficient depends logarithmically on a

colloidal particle’s velocity, cf[25]. Nonetheless, this veloc-
. » - - ity dependence is wealtogarithmig and for what follows
This condition can be used to eliminate longitudinal termsw):a Ietp(kBT)/(Don)=4?Tk/{%/2— y_?n[w/(sv)]} whereu is
such as the pressure gradient term in @j.and the termin 0 4yarage velocity of the colloidal particles with respect to

Vlivdj mﬂghebvilot_:lty nfilseAcqrreletlttlorlh Ecﬁ5bé, :NR']Ch m_'l'b the solvent andy is Euler’'s constant. As an order of magni-
cludes the bulk viscosily. AS INput 10 the model, the equilib-y, a4 yaasonable estimate tois u~Dg/0o, which leads to

rium structure factor must be specified. For this purpose, thff"h ; ; :
i i : two-d | relationkgT)/(Don) ~4w/[(1/2)—
three-dimensional hard-sphere structure factor in the Percugr—len(évs)] m\;ve;]r:asrlénr;a_rS/aD:)o?s %hg (Pr;r?()jtl nngEE)er )La¥ge
t/h t— .

Yevick approximation is used. variations of the Prandtl number, e.g., fraf=10° to P,

At this point, it is usefgl to note tha'g E.q(sl) aﬂd 2) dq =10'° (which more than encompasses the typical range in
not evolve on the same time scale. This is easily seen if OnSaIues), lead to modest changes in the value of

looks at the ratio of the diffusion constarRs= v/D, which
. . ' (kgT)/(Dg7n), namely, from roughly=/2 to m/6, respec-
Insu:%lglecra IIi>r/1 (;fngllg OrSv?trh%Lg?m;Ttdféﬁgg)i ficr)1r ftlﬂﬁjsp rgggtlis tively. The value kgT)/(Do7)~m/4 was arbitrarily chosen

' 9y ' for our numerical work, and, as a result, in two dimensions,

sometimes referred to as the Schmidt numBgy. This d_ 2_ . U : i
means that as far as the relaxation of colloidal number:ﬂncg (m/4)nco™ =, ¢ being the wo-dimensional pack

density fluctuations are concerned, the relaxation of velocity ' fraction. Finally, note that the nonlinear terms in the
Y. . ) . ’ X angevin equations renormalize the bare diffusion constants,
fluctuations is essentially instantaneous. This can be ex:

ploited to eliminate the velocity field and thus obtain a singleand hence, strictly speaking, the preceding discussion applies

) ) T . to the renormalized diffusion constant cf. Sec. Il B.
nonlinear equation for the number-density field. It will some-
times be convenient to rescale the units and fields as follows:
space is in units of, time is in units ofo?/Dy, the number
density,N(r,t), is in units ofn., and the velocity is in units The main motivation for this work is our previous pertur-
of Dy/o, with o the particles’ diameter. In these rescaledbative analysis of Eqg1)—(6), cf. Ref.[13]. There, we used
units, the infinite Prandtl number lim{glso called the high the statistical field theory model presented above, and de-
friction limit) of Eqgs.(1) and(2) together with Eq(6), takes rived, to first order in perturbation theory, the nonequilib-
the following form in Fourier space: rium correction to the two-point correlation function, result-

A. Perturbative calculation
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ing from an applied linear shear gradient given by [S(d)—1], times other shear independent factors, we asso-

_ w0x§/. The steady-state two-point correlation function is ciated the transition from shear thinning to shear thickening
related to the structure factor by to the point where the main peak of the structure factor stops
decreasing and starts increasing, i.e., the point where

dQ ( dQ’ dS(g*)/(da)=0. This point, however, is beyond the scope
<N(k)N(k')>:fﬁf S (N N(K’,27)) of this work, as viscosity calculations, while conceptually
simple, are difficult to do numericallj28] and are not per-
=(2m)98(k+k")n.S(k). (9)  formed here.

The nonequilibrium correction was studied in various lim-

We thus obtained an expression for the first-order correctiolts. For example, at zero wave number=0) and for small
to the nonequilibrium structure factor. We focused on theshear p<1), Eq.(11) reduces to

shear gradient directioxas linear theory was argued to be a

good approximation in the flow directiop (which is con-

flrm_ed by the stochastic S|mulat|9ns of the present WOI’k 3 3/2ncazc(q)/aqz|q:0
Letting q be the wave number in the rescaled units ( ncf(0)=—2a 0
=k0o), the nonequilibrium structure was found to have the 8w [1-ncc(0)]
form

C, (12

1 where C=1.848 is a universal constant. Consequently, for
S(a)=1— [C(@)F @+ F=a]’ (100 long wavelengths the structure facttand quantities with
¢ simple relations to the long wavelength parts of the structure
wherec(q) is the equilibrium direct correlation function in facton is expected to grow as*? for small shear rates. For
Fourier space. Using as input the equilibrium structure factolvave numbers in the rangg>a'?, the behavior crosses
for a hard sphere system in the Percus-Yevick approximaoVver to ana? dependence for small shear rates. The corre-
tion, it was found that the first-order nonequilibrium correc- sponding expression can be found i8], [Eq. (28)].

tion f(q) is given by the expression below: In the opposite limit of infinite shear, Eq11) becomes
even iny and simplifies to give

y2+22

3
n.f(q)=— dx
f(@) 8m2 Jy>o [(x+q)2+y2+22]2

- STy
. fo dpap( S0 (|x))

2 2 2
< ex —ijpdr [(x+r)°+y“+2z7]
aylo S \(x+r)2+y?+ 7%

y2_|_22

3
Nefo :——f dx
of () 872 [(x+Q)?+y?°+z

e

(13

where nowf.(q) is defined without the restriction that
>0 in the integration. Hence, we can rewrite the infinite
(12) shear structure factor as

This allowed us to construct an approximate phase diagram
in the packing fraction-shear rate plane, with an instability _ 1
line defined by the spinodal line S(/q*)|a:am=0, where S.(q) = 1—ngc(q)+f.(q)]"

g* is the position of the largest peak. This constituted one of

the first theoretical predictions of a nonequilibrium transition

to a lamellar pattern resulting from an applied shear in col+rom this simplified expression, one easily determines a

loidal suspensions. In addition, our model includes a kind ofritical packing fraction¢.,, below which no instability

hydrodynamic interaction induced by the active-mixingarises even for infinite shear rate. For the hard sphere model

terms (see below, and is responsible for the instability; as considered, that packing fraction was found to be 37.5% in

far as we know, with the exception of some studies of modthree dimensions.

els describing the more complicated effect of shear on poly- More generally, the behavior of the system, as suggested

mers[26,27], these interactions were absent in the earlielby the structure factor is one of monotonically increasing

works that offer strongest theoretical support for a transitiordisorder in the flow directiony(), with increasing shear, but

to a layered state under sheatr, i.e., the numerical simulatiorssmore complex behavior in the shear gradient directign (

[2-7]. It was thus imperative that the model equations bdn that direction, in Fourier space, the structure factor also

tested in a nonperturbative fashion to find out whether thdlattens out for most wavelengths, except in the neighbor-

instability in guestion was an artifact of the perturbativehood of the main peak, where the structure factor initially

method, or indeed exists. The stochastic simulations dedecreases, but then increases, and eventually diverges at

scribed below confirm the existence of the instability. some large value of the shear rate when the packing fraction
In [13], an attempt was also made at determining, alongs greater than the critical packing fractiaf.,, mentioned

with the instability line, a line representing the point whereabove.

the system turns around from shear thinning to shear thick- As will be seen below, many of those predictions will be

ening. Since the viscosity may be written as an integral oWverified in the present work. However, the prediction that the

(14)
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wavelength of the instability increases slightly with the pack-relax to equilibrium, as can be seen by replacing the distri-
ing fraction of the system turns out to be wrong as far as théution P([N],t) by the equilibrium distribution given by
two-dimensional stochastic simulations are concerned.

B. Moment equations

1 dk  N(K)N(—=k)

To further clarify the mechanisms at work in the creation PeI([N], t)“eXP( f d (eq) ) » (16

and stabilization of the layered states under shear, we now (2m)" n.S=H(K)

examine approximate equations describing the evolution of

the first and second colloid density moments. These two

guantities characterize the essential physics; the first moment

tracks the emergence of order in the system, and the secopgd seeing that we indeed getP¢?([N],t)/9t]=0. Equa-

describes the evolution of fluctuations as the layers develogon (15) clearly shows the physical origin of the active-

and stabilize. Dynamical equations for the moments werenixing term. Just as the random fluctuations in the number

derived from the Fokker-Planck equation corresponding tajensity (third term on the right-hand sitl@re balanced by

the model equations in the limit of infinite Prandtl number the diffusion term,(first term on the right-hand sidlethe

(or high friction), cf. Eq. (7). In the original(nonrescaled  random fluctuations in the fluid velocitiégifth term on the

units, the Stratonovich form of the Fokker-Planck equation isight-hand sidgwhich couple toVN in Eq. (1), are compen-
sated by the active-mixing terrffourth term on the right-

hand side
dP([N],t) kZN(k) IN(K) A hierarchy of equations governing the nonequilibrium
. fdk(SN(k) eq}(k) + woKy ok, equal time moments of the distribution_ can easily be ob-
tained from Eq.(15); for example, the first two moments
obey
o
_ 2 d
HN(K)) Dok? ok d
gt | SEIk) Y gk,

kgT dklf dk, K- @y -ka

2md) 2m?  K?

(e Emn kBT ki ke @y, ok

XN(k—kj;) Lk”ﬂzw)d— l
Y\ nstea(k,) SN(—k,)

kgT dk1J dk, K Py Kz
(2m?) 2m* K

XN(ki—ky) |[P([N],1). (15

X<N(k_kl)N(k1_ ka)N(kz))

neS°(ky) 4

Again we emphasize the need for the active-mixing term
appearing in the above equation. It enables the system tand

dk, Kk':®y,
em® K

<9<N<k>N<k'>>:[

Dok? P kBTf dk, Kk:®y
ot

Seagk) oK, 2mi K

1 kT
<N(k)N(k’)>—T

kgT [ dk,dk, KKz <1>k<N(k ki )N(Kk;—Ko)N(k)N(K'))
X (N(k—k)N(K' +k1)>—— 2 1 Sy

+{k—k'}+2DonKk?(2m)48(k+k"), (18
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where{k«k'} denotes the preceding terms in curly bracketspea). The scaling of the diffusion constant with particle size
with k andk’ interchanged. is also recovered in mode-coupling theory if the UV cutoff is
In the homogeneous phase, i.e., for shears below any traproportional too 1, cf. Ref.[29].
sition to the lamellar phase, an approximate equation for the All the UV divergences in both Eq$19) and(20) have
sheared structure factor can be obtained by assuming the same origin, and are fixed by replacing the bare diffusion
Gaussian form for the nonequilibrium distribution function constantD, by the finite, physical diffusion constabtgg,
(with, for now, zero meanand introducing the structure fac- and an explicitly infinitelactually strongly cutoff-dependent
tor, cf. Eq. (9); with this, Eq.(17) is trivial, and Eq.(18)  part that cancels the UV divergences. To one loop order, the

becomes correction to the self-diffusion constant is
IS(k) 2D ok? a) , keT [ dk, K- -k
= - + woky=— | S(K) + 2Dk _ __f L T
at seak) Yok ° PoPse ) i & 22
2kgT dk, K- P -k which is identical to the form derived by Keyes and
Ty j 2mi K Oppenhein29] in their analysis of the Stokes-Einstein ex-
1 pression in mode-coupling theory and which results in the
1 usual scaling properties given in EQ1).
X S(k—kl)( — ) + l Since the packing fractions required to get an instability
Se9(k)  S®V(ky—k|) are high, the use of the Stokes-Einstein relation may be ques-
- tioned. However, theoretical work by BeenakK&0], ex-
2kgT [ dk, K- Py K perimental work by Kops-Werkhoven and Fijnd6t], and
+ 7 f(ZW)d kf S(k—ky), (19 van Blaadereret al. [32], as well as Brownian dynamics

simulations by Rastogi, Wagner, and Ludtij, suggest that
the Stokes-Einstein relation between the diffusion coefficient

The integrals in this expression have UV divergenges of the colloidal particles and the fluid viscosity remains a
the limit of infinite cutoff that are the usual ones associatedgOOd approximation at high packing fractions, at least for a

with mode-coupling theories of the diffusion coefficient, cf. system of harq ;pneres. And although it is of little rel_evance
Ref. [29]. For example, in mode-coupling theory it is well to our model, it is interesting to note that the Brownian dy-

known that the zero-frequency, one-loop, equilibrium collec-Namics S|mula_t|0ns of Rastogi, Wagner,_and Lu_ﬁi]; lead
tive diffusion constant is to the conclusion that the Stokes-Einstein relation may even

be extended to the nonequilibrium case in the presence of
shear, up until a lamellar phase forms. At that point, the

in which the symmetns(k) = S(—k) was used.

D&Y (k)= Do + kB_Tf dky Stokes-Einstein relation breaks down, which probably means
Sed(k) p J (2m)d that the self-diffusion coefficient is no longer simply related
- R to the collective diffusion constant since long-range order is
K-®_ky-k now present. These simulations also show that the instability
X D(Ceq)(|k_kl|)|k_k1|2+ ka that arises is independent of tne system size. o
In the Introduction we mentioned that our calculation in-
Se([k—ky|) cludes a kind of hydrodynamic interaction. This should be

(200  apparent from the preceding equations, all of which contain

the Oseen tensoi)’k/kz. Nonetheless, the connection be-

Since the boundary conditions on the surface of the colloigaiveen the mode-coupling approach and the usual ones that

particles are not explicitly included in mode-coupling theo-Study hydrodynamic interactions in suspensions, cf. Refs.
ries, their effects appear in the form of the short-wavelengt33~33, iS 1ess obvious. To see how they compare, we use
divergences if the UV cutoffs are set to infinity. This sensi-Ed- (22) in (20) to show that

tivity to the short-wavelength details should be expected

S (k)

since the form of the Stokes-Einstein relation for the self-  pea ) — Dse + keT
diffusion constant depends on the nature of the boundary ¢ seak)y 7
condition used for the fluid motion at a colloidal particle’s o
surface; for example, in three dimensions, f dk, K Py K sEd(|k—k,|)-1
kT o (2m® K s (k)
= Emyo & 23

where¢ is 3 for stick boundary conditions, 2 for slip, and 5/2 in the infinite Prandtl number limit. To first order in density,
at the surface of a bubble. Note however, that whatever thEd- (23) reduces to the expression obtained by Altenberger
boundary condition, the basic scaling properties of theand Deutch, cf. Ref[35]. For example, using the Percus-
Stokes-Einstein relation are the same, and, moreover, oniyevick hard sphere structure factor, this givexs?(k
involve single-colloid particle propertiedor example, the =0)/Dsg~1+2¢; Batchelor's calculation[34], gives
colloid density or colloid-colloid structure factor do not ap- D9 (k=0)/Dge~1+1.45p. Finally, we note that the
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active-mixing induced hydrodynamic interactions arise from 5

) . . ) . ke T  dk. K-Py. -k

the interaction potentials between the colloidal particles, andN(k t)=Dgk?+ o8 1 1 [S(k—ky,H)—1]

in particular will be present in ultradilute, poorly screened ’ n J (2m)d kf ' '
suspensions of charged colloids. While these systems exhibit (27
strong interparticle correlations, the traditional corrections )

due to hydrodynamic interactions are negligible; nonetheles$espectively.

significant corrections to the diffusion constant will arise In the steady stat¢S(k,t)/dt]=0, and the formal solu-

from Eq. (23). tion to Eq.(25) is
If we now rewrite Eq.(19), eliminating D, in favor of - dK’ , dK!
Dse using Eq.(22), in the limit of infinite Prandtl number S(k)=f X ex;{ _ijx X F(k”))ZN(k’)
Pi—o, we find that k @oKy k, @oKy
for wgk,>0, (28
aS(k) 2DSEk2+ N2 P woKy (28
a | geak) oYk, (k) seK ke dk! ke dK!
=f ex Zf (k") |2NM(k")
=g _mwoky k)’( (l)oky
2kgT dk, K-®y -k
—y Sk j(zw)d K2 for wok, <0, (28b)

1 1 wherek’ has itsk, component replaced W , etc. Note that

S(k—k1)< - ) Egs. (288 and (28b imply that S(k) =S(—k). Also notice
Se9(k)  S®U(ky—k|) the formal similarity between Eq28) and the result for the

linear theory of Ronis, although her¢ andI” depend or&.

X

1 + 2keT Nonetheless, Eq28) is a good starting point for numerical
Se9(k) 7 work (see below. Finally, in the plane perpendicular to the
. flow direction,wok,=0, the steady-state solution to Eg5)
f dk; k~<I>k1-k takes the form
———[S(k—ky)—1]. 24
i e STkl @9 i )

Equation (24) is now free of UV divergences. However, ) ] ) ) ) ) .
there will be IR divergences fod<2 as long asS(k) As mentioned in the previous section, simulations confirm

+S€9(k); this divergence arises from the well-known long- that __for large = shear rates,S(k)~1 as long as
time tail problem in two dimensions, cf. E420), which  (@007ky)/Dsg>1. SubstitutingS(k—ky,t) by 1 in the in-
makesD sg<In(k) ask— 0. Note that since the phenomena t€grand of Eqs(26) and(27) should thus be a good approxi-

we are concerned with here occurrainzerowave vectors, Mation to the infinite shear expression 8¢k,), and, not
the logarithmic divergence is not numerically significant for SUrprisingly, leads to the same expression for the infinite

the wave vectors on the two-dimensional lattices used belowghear structure factor as that obtained in the one-loop calcu-
To make contact with the linear theory of Rofig#] itis  lation of Morin and Ronis, cf. Eq(14), namely,
instructive to rewrite Eq(24) as

S(ky) = 7— : (30)
3S(k,t) IS(k,t) 1—nc(c(ky) +f(ky))

:wo y

— 2T (k,t)S(k,t) +2Mk,t),

at Ky where
(25 .
keT [ dk; K- Py -k
where the effective nonequilibrium relaxation rate and noise flko) =~ DSEﬂf (2md K2 c(k=ky), (31)
strength are given by 1
c(k) being the equilibrium direct correlation function related
Dok? kT [ dk, k_{p’kl,k to the structure factor &€P(k)=1[1-n.c(k)]. Note that
T(k,t)= +— - for finite shear, Eq(29) reduces to the one-loop expression
Sea(k) 7 J (2m)d kf given in [13] when the expression obtained in the linear
theory(zero-loop is used forS(k) in Egs.(26) and(27), and
x| S(k—ky.1) _ 1 the nonequilibrium terms are all put into the numerator.
1 Sed(k)  Sed(|k,—k|) According to the analysis of the preceding section and
[13], suspensions that are spatially uniform on average are
unstable for shear rates beyond some critical value, and in
- : (26)  the Gaussian approximation it is straightforward to extend
S(eq>(k) the analvsi : . .
ysis to include this case, thereby allowing nonzero

(N(k)). We first split the number density field into two dis-
and tinct parts by writing
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N(K)=(N(K))+ SN(K),

+ woky%
X

gs(k) | 2Dggk?
ot s (k)
where (N(k)), when nonzero, characterizes the long-range

order at wave numbek, and SN(k), gives the fluctuations 2kgT [ dky k'cgkl'k
around the average. Hence, g f(zﬂ_)d K2
(N(K)N(K"))=(N(K))(N(k"))+{SN(k) SN(k")) X| (s(k—kyq)+|[(N(k—kq))|?/(nV))
=(N(k)){(N(k"))+ncs(k;k"). (32

1 1
>< J—

Se(k)  S°(|ky—k])
Just as above, fluctuations are assumed to have a Gaussian
distribution (now with nonzero meanHere we further sim-
plify matters by making the assumption that the variance is s(k)
diagonal in wave vectors; i.e., we takgk; k')~ (2m)98(k
+k')s(k). (More general equations for spatially periodic K- Do -k

: ‘A J 2kBT dkl Tk
systems are presented in the Appendi¥ith these two ap- + f

proximations, Eq(17) becomes n (2m)d kf

X[s(k—ky)+[(N(k—ky))|*/(ncV) — 1]+ 2D sek?,

+1-
S'ed(k)

AN(K) _| Dk 0 kBTf dk, K- Py K (34)
ot Sted (k) @o Yok, 7@ (zﬁ)d ki Apart from the shear term, the terms in the first two lines of
the preceding equation are diffusionlike where the nonlinear

(N(k))] arise from active mixing. The last two lines include
the usual additive noise for the number density fluctuations,
and multiplicative noise caused by velocity fluctuations that

s(k—kj) 1 s(k—ky) parts[i.e., those with the integrand depending s(k) and
X - +1-
( sea(k)  Se(k) s<eq><k—k1))

(N(K)) — keT [ dky J dk, k-@k;-kj; couple through the convective term.
n J (2m)d) (2m)d k2 It is important to realize that Eq33) will not necessarily
stabilize if a one-dimensional pattern develops since the pro-
(N(ky)) jection operator will make the cubi¢N(k)) term in the
X<N(k_k1)><N(k1_k2)>Fq)(k2)- (33 equation(the nonlinear stabilizing terzero. Hence, unless
C

the nonlinear diffusion term stabilizes itself, E(B3) has
unstable solutions. Higher-order corrections might cure this
roblem. In fact, the one-loop correction to the cubic term

Flnally, note that as in the an_aIyS|s .Of the dlsordf_ered .Statgoes indeed contain terms independent of the projection op-
described above, the renormalizgthysica) Stokes-Einstein erator which could stabilize the system. However, we do not

diffusion constanDsg was introduced in the previous equa- gejve on such matters as this section is mostly intended to

tion instead of the bare self-diffusion constary. show that the instability can be understood in the usual man-

The full expression for the variance is considerably moreyer of simple linear instability in the effective diffusion term.
complicated than Eq(25), even within the Gaussian ap-

proximation. In order to simplify matters, we only present it
under the assumption already used above; i.e., that fluctua-
tions of interest are diagonal. This cannot be exact if The original analysis of the system of equations was done
(N(k))#0, and more general expressions for spatially perifor a three-dimensional system. For this problem, however,
odic systems are presented in the Appendix. three-dimensional stochastic simulations are prohibitively
After some straightforward algebra, it turns we obtain thememory and CPU intensive for the sizes of grid and time-
same form as Eq24), with the modification that inside the step that seem to be required for numerical stability. This
various integrands we le(k—k;)—[(N(k—k4))|?/(n.V) forces our investigations to be carried out in two dimensions.
+s(k—ky), whereV is the volume of the system. Note that Hence, this numerical work cannot be used as a quantitative
the volume factor arises from the relation between the twocomparison with the theoretical work ¢43]. Instead, we
point correlation function and the structure factor, cf. 8.  will make a qualitative comparison with things like the pre-
In a finite system, the wave vectors are discrete andliction that the model equations have an instability to the
(2m)98(k+ k') —Véy _y . This modification taS(k) inside  formation of lamellae, which gives rise to a large peak in the
the integrand perhaps should be expected since the total nostructure factor, near the main peak of the equilibrium struc-
equilibrium density-density correlation function is the physi- ture factor.
cally relevant quantity, and in fact is just(N(k Even though the numerical work is done on a two-
—k))|?(n.V) +s(k—k,). Hence, dimensional grid, the analytical three-dimensional Percus-

Ill. RESULTS
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Yevick approximation to the equilibrium hard sphere struc-
ture factor was used for convenience. One important
consequence of working in two dimensions is that higher
packing fractions are required. This should be expected
since, among other things, the close-pack limit is higher than
in three dimensions. This can be seen more quantitatively bys
considering the packing fraction below which no lamellae
can form, ¢.,, even at infinite shear. As was mentioned
above, in three dimensions E{.4) leads to¢.,=0.375. In

two dimensions Eq(13) becomes

2

_ y
(= g, | B

nec(|x)). (39

The above expression contains an infrared divergence an
thus requires a lower limit cutoff similar to those seen in the
mode-coupling theory of the diffusion constant in two di-  FIG. 1. Structure factor obtained from the moment equations in
mensions, cf. Sec. Il B. Since the calculations are performe¢he homogeneous phase for a shear rate of B4Q0o? [«

on a relatively small finite systenfalbeit with periodic =wq0?/(2Dsg)=4250 and$=0.6. The equilibrium packing frac-
boundary conditionswe are not too concerned by this and tion was 0.6 and a 248161 grid with —29.97%<k,<29.97 and
introduce an IR cutoff in order to estimate the critical pack-—19.82<k,<19.82(in units of o~ ) was used. Note that an analy-
ing fraction. Based on the parameters used in the numericals of several runs shows th&kya) ~|wo— we,| % wherew,
simulations, the lower wave number limit lg,,=0.245, ~~878Dse/o? (=4390) is the limit of stability point for this
which leads to a critical packing fraction ¢f,,=0.558. Fur- ~ density.

thermore, note that., increases with decreasing,;,, or

equivalently with increasing volume, which implies that with a similar expression fowqk,<0; Eq. (29) is used for
fluctuations prevent ordering in very large two dimensionalk,=0. In this last expressionik, is the lattice spacing in
systems. This however is irrelevant for our stochastic simuthe k, direction andél is a unit vector along, and all fields
lations since even wittky,~10"*, representing a system have the same values &f. The needed integrations were
size of the order of 10-1CF¢, the critical packing fraction done by linearly interpolating/(k’) andI' (k") between the
remains around 62%. Consequently, the concentrations @jfrid points, thereby resulting in expressions containing vari-
colloidal particles needed to get an instability in two dimen-ous error functionsthe interpolation is necessary if expres-
sions are high and in the range where freezing is expected isions that are valid at small shear are to be obtairfdally,
three dimensions. Despite these drawbacks, we believe thRe size of the grid was adjusted so ti8fk)~1 could be
two-dimensional stochastic simulations to be a good test ofised in Eq(36) outside the grid.

short- to intermediate-range aspects of the model under the Figures 1 and 2 show some results of this calculation for
application of a linear shear gradient.

A. Moment equations

The moment equations were solved numerically in two 5
ways. In the first, the onset of the instability was examined
by solving Eq.(298) iteratively on a grid. We used the current
S(k) to calculate (k') and I'(k”) by fast-Fourier trans-
forms; these were then used to recalculate the structure fac-
tor, the entire procedure being repeated until convergence
was obtained. The task is further simplified by noting that 146
Eq. (289 implies that 5

. ke dkg
S(k—Akxel)=exp( —sz oK F(k’))S(k)

0.00
X X y

-0.19

L
-20 =10 O 10 20

, FIG. 2. The steady-state diffusion Onsager coefficient,
I'(k,t)S®9(k)/k?, cf. Eq. (26). The contours show wherB(k,t
xexp —2 X X F(kll) N’(kr) _( ) ) ( ) ) q ( ) u WW ( )
k.— Ak, @oK =0 with increasing shear. The system and numerical details are the
X X y . . . . .
same as in Fig. 1. The inset shows the behavior near a maximum of
the structure factor, and in particular shows the quadrupolar pattern
for wok,>0, (36) suggested by EqA13).
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a shear rate close to the instability. In Fig. 1 we see the los
characteristic distortion of the structure factor at high shear, Toe
although unlike the linear theories, now there are large \
changes in the structure factor fiy=0. An interesting in-
sight into the nature of the instability is obtained by
considering effective Onsager diffusion coefficient, = o i ‘
I"(k,t)S€P(k)/K?, cf. Eq. (26), shown in Fig. 2. For suffi-
ciently high shear, a pair thin crescent shaped regions wher
I'(k,t) <0 appear. As the shear increases the negative regiol
increases and approaches Kje=0 line. The inset in Fig. 2
shows the quadrupolar symmetry expected near the pea
maxima from the analysis of ordered periodic states given in
the Appendix, cf. Eq(A13).

The appearance of a region witl{k,t) <0 does not im-
ply that the homogeneous state is unstable. ket 0, the
shear stretches fluctuations in the shear-gradightd{rec-
tion, specifically, ak,— ky+ wok,t; hence, fluctuations with =
wave nl'mee'rS initially in the unstable regime’ will grow FIG. 3. The structure factois(k), in the ordered phase at
only until the!r wave numbers stretch to a point where they:0.393D0/02 when a=5000.
leave the region of negativé. Of course, the rate of stretch-

ing depends orky, and indeed the instability occurs when ¢yssed later in the light of the Langevin simulation results.
the negativd’ region reaches thle, axis. Finally, we show the density-density correlation function,
_In a second approach, the coupled EgS) and(34) were (i), cf. Eq.(32), in Fig. 3. Even on the diffusion time scale,
simulated numerically on a rectangular grid. The lattice waghe peaks have grown very large. Moreover, the algebraic
chosen to have 243 grid points in the direction with  taijls or sidebands suggested by the analysis of spatially pe-
—29.9%k,=29.97 in units of 14, and 81 grid points in the  riodic states given in the Appendix, cf. Egh14), are clearly
ky direction with —9.91<k,<9.91. A nonsquare lattice is yisible and have the expected symmetry. The numerical data
used because in the flow directiéthey direction, the high  gyggests that the sidebands diverge llke-G| ~275:025
shear structure factor goes to unity rapidly with increasingrhis is reminiscent of the Goldstone mode sidebands in x-ray
wave number, whereas the same is not true in the shear gracattering from crystals and has important implications for
dient direction(the x direction. In addition, reducing the the existence of true long-range order, especially in low spa-
wave number range in thedirection allows for more reso- tjg] dimensions.
may be found. The rescaled parameters described previousfifoments outlined in this section has a main drawback in that
were used, together with a packing fraction of 60% and &he diffusion operators may never stabilize. The unstable
shear rate ofr=>5000. The same parameters will be used formodes shown above remain and lead to an ever increasing
the Langevin simulations. amplitude of the sinusoidal pattern. At least part of the prob-
The infinite Prandtl number limit moment equations Were|em is seen in Eq(33) where the CUb|C<N(k)> term will
used, including terms arising from velocity noise fluctua-yanish for a one-dimensional pattern because of the projec-
tions. The structure factor and Onsager diffusion coefficient; operatorszk appearing in the integrand. Higher-order

for this case are shown in Flgs. 3 a”‘?' 4. T_he main results ol e ctions most probably cure this problem; one can easily
this exercise are threefold. First, a sinusoidal pattern devel-

ops with a wave-vector corresponding to the position of the
main peak of the equilibrium structure factor, apparently in- -
dependent of the initial conditions. Specifically, two initial ' . .
configurations were considered. One R&{(k)) small and 5 p
random(as white noiseand s(k) =S©9(k). The other had + 00

(N(x)) set to sinkx) plus small fluctuations, wheré, ' .
#Kmax (Kmax IS the position of the main peak of the equilib- i

rium structure factgrand where the initial variance was set i A
to s(k)=1 for ky#0 ands(k)=S®?(k) for k,=0. Both ~
cases led to the same steady state.

Secondly, within a few diffusion times, the nonlinear dif- —5|
fusion operators of botfN(k)) and s(k) evolve from a I
-1.69

4

3.99x10

configuration with a band of unstable modes, cf. Fig. 2, to a
configuration where a single grid point knspace remains ‘
unstable, cf. Fig. 4. Note that the quadrupolar symmetry seen 20 -10 0 10 20

in the disordered phase is still very apparent. Furthermore, e i

the value of the nonlinear diffusion operators at the unstable .

grid point is about—11 at one diffusion time and slowly FIG. 4. The Onsager diffusion coefficient for the case shown in
increases thereafter. The relevance of this value will be disFig. 3.
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show that terms arise without the troublesome projection op-
erator in higher-order perturbative treatments of the equa-
tions. Indeed, given how small the unstable regions are anc
how large and positiv€' becomes in the adjacent regions, cf. » EESFSE
the inset of Fig. 4, it is quite reasonable that any mode cou- > sis&§s
pling between these modes should lead to a stabilization o
the pattern. Nonetheless, the higher-order corrections ar
quite complicated and are beyond the scope of this work.
The analysis of this section has allowed us to picture the
instability to the formation of layers of colloidal particles
flowing at different speeds as a more standard problem of
linear instability. Numerical simulations of the coupled equa-
tions representing long-range ordgd(k)), and short-range >
order s(k) showed that there is a transient time where the
growth rate of the layers is single exponential, and for which
the wave number of the unstable mode corresponds to th
position of the main peak of the structure factor, which is in
disagreement with our previous predictions based on pertur.
bation theory that the stripe pattern would form at a lower
wave number than the peak position of the equilibrium struc--<,
ture factor. ”

&)

S

B. Langevin equations

The high-friction limit of the model equations with ran-
dom noise, Eq(7), was simulated numerically on a two-
dimensional grid of 128 128 points using a finite difference
scheme for spatial derivatives and a stochastic Runge-Kut
algorithm due to Helfan{i36,37] for the propagation in time.
Although several more elaborate numerical schef&s
were tried, Runge-Kutta gave the best results. For the pur-
pose of the stochastic simulation, it was practical to use thé&er two to five diffusion times, no appreciable increase in the
rescaled units and fields described earlier. main peak of the structure factor was seen, the shear rate was

In rescaled units, the time increment used in the stochastimcreased, and the run continued. This was repeated a few
simulations isAt=10"° and the distance between neighbor-times to make sure it was reproducible and independent of
ing lattice sites isAx=0.1, to insure a sufficiently large initial conditions. An appreciable increase in the main peak
wave-vector rangé¢ i.e., —20<kx,ky<20 in units of 1#).  of the structure factor was seen after a few diffusion times
The only input parameter left is the Prandtl number. Typicalonce the shear rate was increasedate 4500, although a
values are of the order d¢?,=10°, which proved to be im- clear striped phase was not seen within a few diffusion times.
practical for numerical calculations as th¢ needed to in- At «=5000, the system is clearly unstable to the formation
sure stability of the velocity equations was much too smallof stripes in colloid concentration, and we report on this case
for the time scale of the number density equation. Henceln detail below. Finally, note that while the critical value of
two limit cases were considered. First, a much smallerx is comparable to that obtained from the moments analysis
Prandtl number was used, nameB=10°, and second, the (where we find thatx.,=4760 for the grid parameters used
infinite Prandtl number equation, E¢), was used. in the Langevin calculationstrictly speaking, the ratio of

The infinite Prandtl number equation also proved to beDy/Dgg (which should be of order unitymust be known
difficult to integrate numerically, and in order to use the before a rigorous comparison can be made.
stochastic Runge-Kutta algorithm, we have neglected the The following results of the numerical simulation show
multiplicative velocity noise terms. A crude estimate showsvarious aspects of the evolution of a system, as described by
that these terms are only important compared to the usuaur model equations, from a homogeneous state to a striped
convective terms wheak,<2pky,, and are thus impor- phase. Such a steady state is reached with a packing fraction
tant only for very long wavelength fluctuatiofis the veloc- of 60% and a shear rate @f=5000. Figure 5 shows the
ity direction) at high shear rates. configuration at various stages in the evolution of the main

Both of the methods just described gave comparable repeak. At very early times, the structure factor already shows
sults and those presented were obtained from stochastibe effect of shear, although the number density still appears
simulations of the infinite Prandtl number equations. perfectly homogeneous. Very quickly, the structure factor

All runs were done at a packing fraction of 60%, which takes the form depicted in the upper part of Fig. 5, i.e,,
insures that the system becomes unstable at a finite shear r&k, ,k,)~1 for k,#0, and all subsequent changes occur
(at least from estimate from a one-loop correction to meanalong the linek,=0. There, the main peaks @&(k,,ky
field theory, even in two dimensions. A sample run was =0) grow, while for lower wave vectorsS(k,,k,=0) is
performed, starting with a shear rate @f 1000. When, af- basically unchanged from its equilibrium values. This is a

FIG. 5. ConfigurationqN(r) and S(k) obtained by solving the
angevin equations. The system parameters are as in the preceding
igures. The results are averaged over a small time wintE00

time steps or 0.004 diffusion times lat, ,) -
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6x10°F ' cause of higher-order mode-coupling effects than those con-
3 sidered in the moments approach, the saturation amplitude of
5><103§_ the density modulation is quite large. This suggests that the
3 model probably needs additional stabilizing terms such as
4x10% higher-order nonlinear corrections associated with the
= 3 chemical potential(which involve the higher-order direct
E 3><103§_ w5522 ot ] correlation function or with the Onsager coefficients them-
= 2 E selves; neither of these quantities is known particularly well,
ks 2)(1035‘ EE and moreover would greatly increase the numerical effort
= E required to solve the resulting equations. A phenomenologi-
ai— EE cal approach to this problem will be reported elsewhere.
10 I N When the system was left to run longer in the layered
3 i 3
3 Dit/a* 3 regime, the runs sometimes became numerically unstable to
6 ~ i 1 ] large fluctuations occurring within the stripes. To see if this

was only a numerical artifact, the time step was reduced
further, to At=10"7, and the system was run for an addi-
tional diffusion time without incurring any instability.
Hence, the stripe pattern seems to be a stable steady-state
configuration, although it is hard to confirm because of the

, . ) limited number of diffusion times we are able to sample at
different outcome from what the perturbative calculation ofg,ch smallAt’s. It is also possible that we are encountering
[13] predicted, i.e. a flattening &(k,,k,=0), exceptin the ¢, lence effects which prove to be unstable for our numeri-
neighborhood of the main peak. For wave vectors larger thag,| scheme. Note that such effects were seen in experiments
the equilibrium main peak, large fluctuations preclude usych as those of Ackersaet al. [11], in which “. .. occa-

from determining whether the structure factor in the sheagjgna) plumes of disordered regions. .” were reported.
gradient direction flattens or retains its equilibrium shapegq, oyr stochastic simulations, the sudden occurrence of
Referring again to Fig. 5, after 4 to 5 diffusion times, stripes,ge fluctuations within a stripe might correspond to an ini-
are discernible, and the peaksSk, ,k,=0) are now of the (i3] tyrhulent state leading to the “plumes” mentioned
order of 1000. As the system evolves, the stripes becomgy,qye.

better defined and the peaks grow until saturation is reached. Finally, note that the moment analysis and the full Lange-

Then, after roughly 18 diffusion times, stripes are clearlyyy simulations give very similar descriptions of the onset of
seen, and the peaks of the structure factor have stoppgfe instability and of the initial growth of the pattern. They
growing, having reached a value of about 6000. differ in that the former does not seem to stabilifer rea-

The structure factor in the gradient direction reveals anygns described aboyand the latter does not exhibit any
other unexpected feature. Whereas the one-loop perturbatiqfiy|gstone mode sidebands, cf. Figs. 3 and 5. There are sev-
theory predicted that the main peak would shift to a smallef | possible explanations for this difference. First, this is a
wave numbei.e., larger wavelengthdy as much as 20 0 grongly driven nonequilibrium system and there isanpri-

30% as the instability is approached, Fig. 5 shows the growthyi reason why Goldstone modes should be there,aie

in t_he structure factor occurring very _close to thq equ"'br'umproximatemoment analysis notwithstanding. Another possi-
main peak. The exact position remains uncertain because gfjity is that the two calculations handle finite size effects in
the finite mesh size, but it is clearly very close to the equi-g iy different ways, leading to a quenching of these long-
librium main peak. This is in agreement with the analysis 0fyayelength fluctuations in the Langevin approach. Finally, it
the moment equations, and is discussed in more detail in thg ¢jear that the moment analysis is missing something, since
Appendix. L o it does not seem to stabilize; the resulting structure factors

In the flow direction(here they direction), the structure  seem to diverge, and it is likely that there is a concomitant
factor flattens out, which means that under large shear, th&mplification of the sidebands. Hence, they may be there in

system becomes almost perfectly disordered in the flow di,eo Langevin approach, but they may be too small to see.
rection, cf. Fig. 5. This is in accord with the observation

made in[13]; i.e., linear theory24] is a good approximation
as long asak,>1, and consequently, for large shear rates,
nonlinearities are important only in the plane perpendicular The main goal of this work was to determine whether the
to the velocity direction, with the system being strongly dis-instability toward the formation of a lamellar phase predicted
ordered elsewhere. theoretically[13], is indeed present at the nonperturbative
Figure 6 shows the evolution of the main peak with time.level for the model represented by Eq@$) and (2). This is
The inset, depicting the same data on a semilog plot, reveatonfirmed either by numerical analysis of the moment or
that the long-range order develops following a single expoiangevin equations. Because of computing constraints, the
nential growth until close to saturation. Furthermore, thestochastic simulations were performed on a two-dimensional
slope of the semilog plot has roughly the same value as thajrid, which precluded quantitative comparison with three-
found by the moments’ method. That is, the growth evolvesdimensional calculations. Still, many interesting qualitative
according to exp(7), where 18<1/7<12. Note that while comparisons were obtained. First and foremost, it was found
the Langevin approach seems to saturate, presumably b#kat the model does indeed go through a phase transforma-

D,t/o*

FIG. 6. The evolution of the peak maximum for the Langevin
calculation shown in Fig. 5.

IV. CONCLUSIONS
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tion at high enough packing fraction and shear rate, to a newhereG is a reciprocal lattice vector for the periodic system
phase where colloidal particles align themselves in stripeand wheres(k;k’) is the structure factor introduced in Eq.
along the flow direction. Hence, a simple continuity equation(32). The discrete Fourier coefficientdNg) are obtained
for the number density of colloidal particles coupled to thefrom (N(r)) in the usual manner, that is

Navier-Stokes equation for the fluid velocity with an added

active-mixing term(required by detailed balance, and with

no adjustable parametgrseproduce many features seen in

various experiments and simulations on colloidal suspen- <NG>EfﬂeiG~r<N(r)>' (A3)
sions. The Langevin simulations also reveal that apart from RY

early times, long-range order develops as a single exponen-
tial growth, up to late times when saturation occurs.

This suggests the presence of the usual linear instability,
and is revealed in the moments’ method where the theory ig/
reformulated in an approximate fashion into relatively simple
diffusionlike equations for the first and second moments drR , ,
which represent the developing long-range order and the Se(k)EJTJ dr e/ G RHYIkTg(R+ 21 R—3r), (A4)
short-range order, respectively. We have shown that the in- v ”
finite shear limit correction to the structure factor found ear-
lier by different perturbative method$3] is easily recovered wheren,s(r;r’) is the real-space, two-point density cumu-
within this approach. Again with the help of numerical inte- |ant, cf. Eq.(32). Sinces(r;r’) is a symmetric function of
gration on a grid, the deterministic moments’ equations areindr’, it follows thatsg(k) is an even function ok. Equa-
studied. We find that in roughly a diffusion time, the nonlin- tion (A2) is tantamount to assuming that
ear diffusion operators evolve towards a steady state in
which an original band of unstable modes shrinks to a single
grid point ink space, and that the value of the unstable mode s(r;r')=FG(r+r');r—r’), (A5)
corresponds to the single exponential growth rate seen in the
Langevin simulations. Furthermore, as for the Langevm
simulations, the wave number corresponding to the wavelazleggF(R :r) is periodic inR with the periodicity of the
length of the lamellar pattern corresponds almost exaatly The dimensionality of the reciprocal lattice can be less
far as can be resolved on our grtd the position of the main than that of the system, and in ar?icular we will assume that
peak of the equilibrium structure factor, which is contrary tothere is 1o orde?/m the d|rect|gn of the shear velocigy, (
results of our previous theoretical analysis. Apart from their
use in clarifying the single exponential growtand maybe and thus,G, vanishes. This has the effect of eliminating
the chosen wavelength of the layetise moments’ equations many of the shear convgcnve terms. In order to see how this
are of limited use because the projection operator appearin((:‘,)omeS about for the variance, we let
in the integrandga result of the assumed incompressibility
of the fluid make for the vanishing of the stabilizing nonlin- K=k+k’' and xk=(k—k’)/2, (AB)
ear term once a periodic pattern develops. Higher-order cor-
rections would thus be needed to cure this problem.

In effect, we have shown through numerical simulations"o™M which it follows that
that a model based on simple symmetries contains the essen-
tial ingredients to reproduce many features of sheared colloi- P 9

. Jd Jd
dal suspensions. kvaLk)’,W:Kymﬁny;. (A7)
X X X X

herev is the volume of the primitive lattice cell. Similarly,
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By using Egs(Al) and(A2) in Eq. (17), in the Gaussian
approximation, we find that
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For spatially periodic states,

(N(K))=2 (Ng)(2m)98(k—G) (A1) -
G é’(NG) 2 r <N > kg T kel G- dg, G
and ¢e ¢ 7 G1.G; GZ S(eq (GZ)
X(Ng-c,){Ng,-6,{Na,), (A8)

s(k;k')=§ se((k—k")/2)(2m)45(k+k'—G),
(A2) where
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DSEGZ kBT dkl G'(Bkl'G G'chl'Gl
PR A L - bt s 6. ((GH+Gy)2—ky)
G;G S(eq)(G) 7 (27T)d ki ki G Gl( 1 1
1 1
x| sy(G—k )( - - ><(S“?'”(G ) S°9(|G,—k |>H
So(G— - _
°T MlseuG)  se9(|G—ky)) . v
for G#G;, (A9b)
+1-— (A93)
Se9(G) where we have also introduc@kg, cf. Eq.(22). Note that

the diagonal part oF is equivalent to the diffusion operators
obtained in the text; i.el's.c=1(G,t), cf. Eq. (26). Also
© note that the nonlinear terms vanish for one-dimensional pat-

_ kBTf dk; { G ®g-g, ki terns; this has some interesting implications for two-
€17 | (2m)9 [G—G4|2S®9(ky) dimensional systems, as discussed in the text.

By using Egs.(Al) and (A2) in the general second mo-
ment equations, cf. Eq18), and making the Gaussian ap-

X8g-6,(k1=(G=G1)/2) proximation, it follows that

and

7se(k) _ | d56(K) _ Dsd3G+k® kT [ dk, (%G+k)(%G+k):®kl/l_ 1 o)
gt Ok, seo(ic+k) 7 J (2m) K2 |7 seaic+k)/]C
keT (%G-I—k)(—%G+k+G2)Z£(71/2)G+k+GI/N No. o )se (k- 3(G—Gp)
—_——] _ _ S —_— = J—
7 | 656, |- 1G+k+Gy|2n SV (|- 1G+k—G,|) © SV G GTCn 2 2
(%G+k)(Gl—Gz):cﬁ,%G+k+GllN Ne. - 5.k — 5(G—G)
- _ _6.)S6,(k—3(G—
18, [~ 3G kTG SeU(|G - Gyf) v oo 2 ?
(361K)(G1-Go)idoc, Mo Y50 (e HE—G)
- _ _6,)Sc,(K—3(G—
616, [G— Gyl N S®U(Gy—Gy) ¢ oM G ST 2
f dk; (3GHK)(—3G+k+Gy):dy s 1) T,
+ S, (K—k1+3(G—G1))sg-g, (k+3(Gy+
& J (2m? KBSEI(|-1G+k+Gy) b - ° vImeme, et
f dk, (3G+K)(—3G—k+ki+G):dy et H(6—G) 16
- e, (K—k1+3(G—G1))sg-g, (K+3
& J 2m® KSCI(|-iG—k+k +Gy) b o C vimeme e
f gy (10 kDo o, (k—5(G—G1))Se_g,(3(G—Gy)—k,)
e, (k—3(G—G1))sg_c,(3(G—G1)—
ciFe ) (2m) [G-G,[2st(k,) T T IS T
keT (%G+k)(%G—k):£(1/2)e+k—el<N J(Na) | +(k O+ 2D k2
-— _ +{ke——k}+
e n3G+k—G, 2 MR ANN SE 760
2kBTJ dk, <%G+k><%e—k>:£kl[ o L0
J— S — — s
7 J (2m) K2 G\n T Teo
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where Eg.(22) has again been used. If we assume that

sg(k)=0 for nonzeroG, Eq. (A10) becomes

dso(k) 3So(K)

ot =wq ya—kx_zro(k,t)SO(k)+2No(k,t),

(A11)

where

S L
AT g ) 2md K2

X So(k_ kl)

1
seak) s<eq><|k—k1|>)

kT KK: D g,

7 G |k—G4|%n,

Lt
S (k)

1
S(eq)(k) - S(eq)(Gl)

X[(Ng)|? (A12a)

and where

Nk, 0= Do+ kT [ dk, Kk:®y,
oS n ) (2md K

[So(k—kq)—1]

keTw KD g
—> ————|(Ng )2

(A12b
7 G nlk—Gy|? )

For disordered state$N¢) vanishes, and the noise and re-
laxation rate are identical to those introduced in the text, cf
Egs. (27) and (26). In addition, if we take the continuum

limit, ie., we let Zg —V[dG/(2m)* and (Ng)
—(N(G))/V, we obtain Eq(34).
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keTGII(N, )%/ 2[S9 (k)]

8n \ Y sinf(26),

k=G,

(A13)

ask— G4, whered is the angle betweek— G, andG;. The
term now has a definite sign, and in particular is positive
whenG; corresponds to a minimum of the equilibrium struc-
ture factor. Indeed, our numerical work confirms these pre-
dictions, cf., e.g., Fig. 4.

While the preceding argument suggests that any pattern
should arise with a characteristic wave vector corresponding
to the main structural peak of the equilibrium structure fac-
tor, it is by no means a proof, nor does it imply that a steady
state exists. In particular, the nonlinear terms in E&8)
vanish identically for one-dimensional patterns, and hence,
for the two-dimensional numerical studies presented in the
text. Thus, the existence of a steady state implies that either
I's,.6,=0, cf. Eq.(A9a) or that other nonlinearities be in-

troduced, either as corrections to the Gaussian approxima-
tions used to analyze the Fokker-Planck equation, or as cor-
rections to the model.

If a steady state exists, we can formally solve E4L0),
thereby obtaining the same forms as found in &), with
I'o(k,t) andNy(k,t) substituted fol" (k) and A{k), respec-
tively. (Of course, for this to work, we require thBj(k,t)
>0 whenk,=0). The discrete terms iny(k,t) are inter-
esting; they diverge whehk approaches a reciprocal lattice
vector, and while this divergence will be smeared out by the
integrations ovek, in Eq. (28), it will become more and
more important a&,— 0. Indeed, forkk,=0 we can use Eq.
(29 and conclude thasy(k) is |k—G;| 2 singular in the
ky=0 plane. This is not totally surprising, and is reminiscent
of the Goldstone-mode singularities caused by phonons in
crystals[39], although here the shear makes them very an-
isotropic. More generally, fok, sufficiently small, we can

There are several conclusions that can be drawn from thﬁqnore the effects of convection, and hence, @4.2b) sug-

approximate equations of motion for the first two momentsgestS that

Egs. (A8) and (All). First, notice that the sum over wave
numbers in Eq(A123) can diverge ak approaches a recip-
rocal lattice vector, and perhaps more problematically, the
divergent terms will be both positive and negative depending
on the direction of approach. One way that this can be
avoided entirely is that the reciprocal lattice vectors have a

sirt( )

So(K)

magnitude corresponding to an extremum of the equilibriumwhere the exponent; will be nonzero if T'g(Gq,t) ~ |k

structure factor. In this event, the divergence disappears and G;|” ask— G;. Our numerical work suggests that &5

the corresponding term in the sum in E&12a) becomes

—-n=<1.
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